0
Research Papers

Probabilistic Solution of a Duffing-Type Energy Harvester System Under Gaussian White Noise

[+] Author and Article Information
H. T. Zhu

Associate Professor Mem. ASME State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China e-mail: htzhu@tju.edu.cn

Manuscript received July 31, 2014; final manuscript received November 28, 2014; published online February 27, 2015. Assoc. Editor: Bilal M. Ayyub.

ASME J. Risk Uncertainty Part B 1(1), 011005 (Feb 27, 2015) (8 pages) Paper No: RISK-14-1035; doi: 10.1115/1.4029143 History: Received July 31, 2014; Accepted December 09, 2014; Online February 27, 2015

This paper proposes a solution procedure to formulate an approximate joint probability density function (PDF) of a Duffing-type energy harvester system under Gaussian white noise. The joint PDF solution of displacement, velocity, and an electrical variable is governed by the Fokker-Planck (FP) equation. First, the FP equation is reduced to a lower-dimensional FP equation only about displacement and velocity by a state-space-split (SSS) method. The stationary joint PDF of displacement and velocity can be solved exactly. Then, the joint PDF of displacement, velocity, and the electrical variable can be approximated by the product of the obtained exact PDF and the conditional Gaussian PDF of the electrical variable. A parametric study is further conducted to show the effectiveness of the proposed solution procedure. The study considers weak nonlinearity, strong nonlinearity, high excitation level, and a bistable oscillator. Comparison with the simulated results shows that the proposed solution procedure is effective in obtaining the joint PDF of the energy harvester system in the examined examples.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ali, S. F., and Adhikari, S., 2013, “Energy Harvesting Dynamic Vibration Absorbers,” J. Appl. Mech., 80(4), p. 041004. 10.1115/1.4007967
Green, P. L., Worden, K., Atallah, K., and Sims, N. D., 2012, “The Benefits of Duffing-Type Nonlinearities and Electrical Optimisation of a Mono-Stable Energy Harvester under White Gaussian Excitations,” J. Sound Vib., 331(20), pp. 4504–4517. 10.1016/j.jsv.2012.04.035
Khovanova, N. A., and Khovanov, I. A., 2011, “The Role of Excitations Statistic and Nonlinearity in Energy Harvesting from Random Impulsive Excitations,” Appl. Phys. Lett., 99(14), p. 144101. 10.1063/1.3647556
Harne, R. L., and Wang, K. W., 2013, “A Review of the Recent Research on Vibration Energy Harvesting via Bistable Systems,” Smart Mater. Struct., 22(2), p. 023001. 10.1088/0964-1726/22/2/023001
Green, P. L., Worden, K., and Sims, N. D., 2013, “On the Identification and Modelling of Friction in a Randomly Excited Energy Harvester,” J. Sound Vib., 332(19), pp. 4696–4708. 10.1016/j.jsv.2013.04.024
Daqaq, M. F., 2012, “On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting under White Gaussian Excitations,” Nonlinear Dyn., 69(3), pp. 1063–1079. 10.1007/s11071-012-0327-0
Twiefel, J., and Westermann, H., 2013, “Survey on Broadband Techniques for Vibration Energy Harvesting,” J. Intel. Mater. Syst. Struct., 24(11), pp. 1291–1302. 10.1177/1045389X13476149
Challa, V. R., Prasad, M. G., Shi, Y., and Fisher, F. T., 2008, “A Vibration Energy Harvesting Device with Bidirectional Resonance Frequency Tunability,” Smart Mater. Struct., 17(1), p. 015035. 10.1088/0964-1726/17/01/015035
Shahruz, S. M., 2006, “Design of Mechanical Band-Pass Filters for Energy Scavenging,” J. Sound Vib., 292(3–5), pp. 987–998. 10.1016/j.jsv.2005.08.018
Shahruz, S. M., 2006, “Limits of Performance of Mechanical Band-Pass Filters Used in Energy Harvesting,” J. Sound Vib., 293(1–2), pp. 449–461. 10.1016/j.jsv.2005.09.022
Mann, B. P., and Sims, N. D., 2009, “Energy Harvesting from the Nonlinear Oscillations of Magnetic Levitation,” J. Sound Vib., 319(1–2), pp. 515–530. 10.1016/j.jsv.2008.06.011
Cottone, F., Vocca, H., and Gammaitoni, L., 2009, “Nonlinear Energy Harvesting,” Phys. Rev. Lett., 102(8), p. 080601. 10.1103/PhysRevLett.102.080601 [PubMed]
Gammaitoni, L., Neri, I., and Vocca, H., 2009, “Nonlinear Oscillators for Vibration Energy Harvesting,” Appl. Phys. Lett., 94(16), p. 164102. 10.1063/1.3120279
Barton, D. A. W., Burrow, S. G., and Clare, L. R., 2010, “Energy Harvesting from Vibrations with a Nonlinear Oscillator,” J. Vib. Acoust., 132(2), p. 021009. 10.1115/1.4000809
Mann, B. P., and Owens, B. A., 2010, “Investigations of a Nonlinear Energy Harvester with a Bistable Potential Well,” J. Sound Vib., 329(9), pp. 1215–1226. 10.1016/j.jsv.2009.11.034
Quinn, D. D., Triplett, A. L., Bergman, L. A., and Vakakis, A. F., 2011, “Comparing Linear and Essentially Nonlinear Vibration-Based Energy Harvesting,” J. Vib. Acoust., 133(1), p. 011001. 10.1115/1.4002782
Boisseau, S., Despesse, G., and Seddik, B. A., 2013, “Nonlinear H-Shaped Springs to Improve Efficiency of Vibration Energy Harvesters,” J. Appl. Mech., 80(6), p. 061013. 10.1115/1.4023961
Masana, R., and Daqaq, M. F., 2013, “Response of Duffing-Type Harvesters to Band-Limited Noise,” J. Sound Vib., 332(25), pp. 6755–6767. 10.1016/j.jsv.2013.07.022
Kovacic, I., and Brennan, M. J., 2011, The Duffing Equation: Nonlinear Oscillators and their Behaviour, John Wiley & Sons, West Sussex, UK.
Feng, J. Q., Xu, W., and Wang, R., 2008, “Stochastic Responses of Vibro-Impact Duffing Oscillator Excited by Additive Gaussian Noise,” J. Sound Vib., 309(3–5), pp. 730–738. 10.1016/j.jsv.2007.07.070
Feng, J. Q., Xu, W., Rong, H. W., and Wang, R., 2009, “Stochastic Responses of Duffing-Van der Pol Vibro-Impact System Under Additive and Multiplicative Random Excitations,” Int. J. Non-Linear Mech., 44(1), pp. 51–57. 10.1016/j.ijnonlinmec.2008.08.013
Li, C., Xu, W., Feng, J. Q., and Wang, L., 2013, “Response Probability Density Functions of Duffing-Van der Pol Vibro-Impact System Under Correlated Gaussian White Noise Excitations,” Physica A, 392, pp. 1269–1279. 10.1016/j.physa.2012.11.053
Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., and Ferrari, V., 2012, “Piezoelectric Buckled Beams for Random Vibration Energy Harvesting,” Smart Mater. Struct., 21(3), p. 035021. 10.1088/0964-1726/21/3/035021
Martens, W., von Wagner, U., and Litak, G., 2013, “Stationary Response of Nonlinear Magneto-Piezoelectric Energy Harvester Systems under Stochastic Excitation,” Eur. Phys. J. Special Topics, 222, pp. 1665–1673. 10.1140/epjst/e2013-01953-5
Daqaq, M. F., 2010, “Response of Uni-Modal Duffing-Type Harvesters to Random Forced Excitations,” J. Sound Vib., 329(18), pp. 3621–3631. 10.1016/j.jsv.2010.04.002
Litak, G., Friswell, M. I., and Adhikari, S., 2010, “Magnetopiezoelastic Energy Harvesting Driven by Random Excitations,” Appl. Phys. Lett., 96, p. 214103. 10.1063/1.3436553
Kumar, P., Narayanan, S., Adhikari, S., and Friswell, M. I., 2014, “Fokker-Planck Equation Analysis of Randomly Excited Nonlinear Energy Harvester,” J. Sound Vib., 333(7), pp. 2040–2053. 10.1016/j.jsv.2013.11.011
Er, G. K., 2011, “Methodology for the Solutions of Some Reduced Fokker-Planck Equations in High Dimensions,” Ann. Phys. (Berlin), 523(3), pp. 247–258. 10.1002/andp.v523.3
Zhu, H. T., 2012, “Probabilistic Solution of Some Multi-Degree-of-Freedom Nonlinear Systems under External Independent Poisson White Noises,” J. Acoust. Soc. Am., 131(6), pp. 4550–4557. [CrossRef] [PubMed]
Er, G. K., 1998, “An Improved Closure Method for Analysis of Nonlinear Stochastic Systems,” Nonlinear Dyn., 17(3), pp. 285–297. 10.1023/A:1008346204836
Zhu, H. T., Er, G. K., Iu, V. P., and Kou, K. P., 2011, “Probabilistic Solution of Nonlinear Oscillators Excited by Combined Gaussian and Poisson White Noises,” J. Sound Vib., 330(12), pp. 2900–2909. 10.1016/j.jsv.2011.01.005
Zhu, H. T., 2014, “Probabilistic Solution of Vibro-Impact Systems under Additive Gaussian White Noise,” J. Vib. Acoust., 136(3), p. 031018. 10.1115/1.4027211
Caughey, T. K., 1963, “Equivalent Linearization Techniques,” J. Acoust. Soc. Am., 35(11), pp. 1706–1711. [CrossRef]
Spanos, P. D., 1981, “Stochastic Linearization in Structural Dynamics,” Appl. Mech. Rev., 34(1), pp. 1–8.
Roberts, J. B., and Spanos, P. D., 2003, Random Vibration and Statistical Linearization, Dover Publications Inc., Mineola, NY.
Socha, L., 2008, Linearization Methods for Stochastic Dynamic Systems, Springer, Berlin, Germany.

Figures

Grahic Jump Location
Fig. 1

Comparison of PDFs in Case 1 (weak nonlinearity): (a) PDFs of displacement; (b) logarithmic PDFs of displacement; (c) PDFs of velocity; (d) logarithmic PDFs of velocity; (e) PDFs of an electrical variable; and (f) logarithmic PDFs of an electrical variable

Grahic Jump Location
Fig. 2

Comparison of PDFs in Case 2 (strong nonlinearity): (a) PDFs of displacement; (b) logarithmic PDFs of displacement; (c) PDFs of velocity; (d) logarithmic PDFs of velocity; (e) PDFs of an electrical variable; and (f) logarithmic PDFs of an electrical variable

Grahic Jump Location
Fig. 3

Comparison of PDFs in Case 3 (high excitation level): (a) PDFs of displacement; (b) logarithmic PDFs of displacement; (c) PDFs of velocity; (d) logarithmic PDFs of velocity; (e) PDFs of an electrical variable; and (f) logarithmic PDFs of an electrical variable

Grahic Jump Location
Fig. 4

Comparison of PDFs in Case 4 (a bistable oscillator): (a) PDFs of displacement; (b) logarithmic PDFs of displacement; (c) PDFs of velocity; (d) logarithmic PDFs of velocity; (e) PDFs of an electrical variable; and (f) logarithmic PDFs of an electrical variable

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Articles from Part A: Civil Engineering
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In