0
Research Papers

Nonlinear Oscillator Stochastic Response and Survival Probability Determination via the Wiener Path Integral

[+] Author and Article Information
Yuanjin Zhang

Institute for Risk and Uncertainty, University of Liverpool, Liverpool L69 3GH, UKe-mail: ylzhyj@liverpool.ac.uk

Ioannis A. Kougioumtzoglou

Department of Civil Engineering and Engineering Mechanics, The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027e-mail: ikougioum@columbia.edu

Manuscript received September 1, 2014; final manuscript received January 20, 2015; published online April 20, 2015. Assoc. Editor: Athanasios Pantelous.

ASME J. Risk Uncertainty Part B 1(2), 021005 (Apr 20, 2015) (15 pages) Paper No: RISK-14-1047; doi: 10.1115/1.4029754 History: Received September 01, 2014; Accepted February 05, 2015; Online April 20, 2015

A Wiener path integral (WPI) technique based on a variational formulation is developed for nonlinear oscillator stochastic response determination and reliability assessment. This is done in conjunction with a stochastic averaging/linearization treatment of the problem. Specifically, first, the nonlinear oscillator is cast into an equivalent linear one with time-varying stiffness and damping elements. Next, relying on the concept of the most probable path, a closed-form approximate analytical expression for the oscillator joint transition probability density function (PDF) is derived for small time intervals. Finally, the transition PDF in conjunction with a discrete version of the Chapman–Kolmogorov (C–K) equation is utilized for advancing the solution in short-time steps. In this manner, not only the nonstationary response PDF but also the oscillator survival probability and first-passage PDF are determined. In comparison with existing numerical path integral schemes, a significant advantage of the proposed WPI technique is that closed-form analytical expressions are derived for the involved multidimensional integrals; thus, the computational cost is kept at a minimum level. The hardening Duffing and the bilinear hysteretic oscillators are considered as numerical examples. Comparisons with pertinent Monte Carlo simulation (MCS) data demonstrate the reliability of the developed technique.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rubinstein, R. Y., and Kroese, D. P., 2007, Simulation and the Monte Carlo Method, John Wiley & Sons, Hoboken, NJ.
Bucher, C., 2011, Simulation Methods in Structural Reliability, (Marine Technology and Engineering, Vol. 2), Taylor and Francis, Boca Raton, FL, pp. 1071–1086.
Au, S.-K., Ching, J., and Beck, J. L., 2007, “Application of Subset Simulation Methods to Reliability Benchmark Problems,” Struct. Saf., 29(3), pp. 183–193. 10.1016/j.strusafe.2006.07.008
Au, S.-K., and Beck, J. L., 2001, “Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation,” Probab. Eng. Mech., 16(4), pp. 263–277. 10.1016/S0266-8920(01)00019-4
Schueller, G. I., Pradlwarter, H. J., and Koutsourelakis, P. S., 2004, “A Critical Appraisal of Reliability Estimation Procedures for High Dimensions,” Prob. Eng. Mech., 19(4), pp. 463–474. 10.1016/j.probengmech.2004.05.004
Li, J., and Chen, J., 2009, Stochastic Dynamics of Structures, John Wiley & Sons, Hoboken, NJ.
Kougioumtzoglou, I. A., 2013, “Stochastic Joint Time-Frequency Response Analysis of Nonlinear Structural Systems,” J. Sound Vib., 332(26), pp. 7153–7173. 10.1016/j.jsv.2013.08.024
Spanos, P. D., and Kougioumtzoglou, I. A., 2014, “Survival Probability Determination of Nonlinear Oscillators Subject to Evolutionary Stochastic Excitation,” J. Appl. Mech., 81(5), pp. 051016-1–051016-9. 10.1115/1.4026182
Kougioumtzoglou, I. A., and Spanos, P. D., 2009, “An Approximate Approach for Nonlinear System Response Determination Under Evolutionary Stochastic Excitation,” Curr. Sci., 97(8), pp. 1203–1211.
Kougioumtzoglou, I. A., and Spanos, P. D., 2013, “Nonlinear MDOF System Stochastic Response Determination via a Dimension Reduction Approach,” Compu. Struct., 126, pp. 135–148. 10.1016/j.compstruc.2012.11.020
Wiener, N., 1921, “The Average of an Analytic Functional,” Proc. Natl. Acad. Sci. USA, 7(9), pp. 253–260.
Feynman, R. P., 1948, “Space-Time Approach to Non-Relativisic Quantum Mechanics,” Rev. Mod. Phys., 20, pp. 367–387. 10.1103/RevModPhys.20.367
Chaichian, M., and Demichiev, A., 2001, Path Integrals in Physics, Vol. 1, Institute of Physics Publishing, Philadelphia.
Kougioumtzoglou, I. A., and Spanos, P. D., 2012, “An Analytical Wiener Path Integral Technique for Nonstationary Response Determination of Nonlinear Oscillators,” Probab. Eng. Mech., 28, pp. 125–131. 10.1016/j.probengmech.2011.08.022
Kougioumtzoglou, I. A., and Spanos, P. D., 2014, “Nonstationary Stochastic Response Determination of Nonlinear Systems: A Wiener Path Integral Formalism,” J. Eng. Mech., 140(9), pp. 04014064-1–04014064-14. 10.1061/(ASCE)EM.1943-7889.0000780
Di Matteo, A., Kougioumtzoglou, I. A., Pirrotta, A., Spanos, P. D., and Di Paola, M., 2014, “Non-Stationary Stochastic Response Determination of Nonlinear Oscillators With Fractional Derivatives Elements via the Wiener Path Integral,” Probab. Eng. Mech., 38, pp. 127–135. 10.1016/j.probengmech.2014.07.001
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press, New York.
Wehner, M. F., and Wolfer, W. G., 1983, “Numerical Evaluation of Path Integral Solutions to Fokker-Planck Equations.” Phys. Rev. A, 27(5), pp. 2663–2670. 10.1103/PhysRevA.27.2663
Naess, A., and Johnsen, J. M., 1993, “Response Statistics of Nonlinear, Compliant Offshore Structures by the Path Integral Solution Method,” Probab. Eng. Mech., 8(2), pp. 91–106. 10.1016/0266-8920(93)90003-E
Di Paola, M., and Santoro, R., 2008, “Path Integral Solution for Nonlinear System Enforced by Poisson White Noise,” Probab. Eng. Mech., 23(2–3), pp. 164–169. 10.1016/j.probengmech.2007.12.029
Pirrotta, A., and Santoro, R., 2011, “Probabilistic Response of Nonlinear Systems Under Combined Normal and Poisson White Noise via Path Integral Method,” Probab. Eng. Mech., 26(1), pp. 26–32. 10.1016/j.probengmech.2010.06.003
Kougioumtzoglou, I. A., and Spanos, P. D., 2013, “Response and First-Passage Statistics of Nonlinear Oscillators via a Numerical Path Integral Approach,” ASCE J. Eng. Mech., 139(9), pp. 1207–1217. 10.1061/(ASCE)EM.1943-7889.0000564
Kougioumtzoglou, I. A., and Spanos P. D., 2014, “Stochastic Response Analysis of the Softening Duffing Oscillator and Ship Capsizing Probability Determination via a Path Integral Approach,” Probab. Eng. Mech., 35, pp. 67–74. 10.1016/j.probengmech.2013.06.001
Spanos, P. D., and Lutes, L. D., 1980, “Probability of Response to Evolutionary Process,” J. Eng. Mech. Div., 106(2), pp. 213–224.
Roberts, J. B., and Spanos, P. D., 1986, “Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems,” Int. J. Nonlinear Mech., 21(2), pp. 111–134. 10.1016/0020-7462(86)90025-9
Zhu W. Q., 1996, “Recent Developments and Applications of the Stochastic Averaging Method in Random Vibration,” Appl. Mech. Rev., 49(10S), pp. 72–80. 10.1115/1.3101980
Roberts, J. B., and Spanos, P. D., 2003, Random Vibration and Statistical Linearization, Dover Publications, New York.
Taniguchi, T., and Cohen, E. G. D., 2008, “Inertial Effects in Non-Equilibrium Work Fluctuations by a Path Integral Approach,” J. Stat. Phy., 130(1), pp. 1–26. 10.1007/s10955-007-9398-6
Ewing, G. M., 1985, Calculus of Variations with Applications, Dover Publications, Mineola, NY.
Solomos, G. P., and Spanos, P. D., 1984, “Oscillator Response to Nonstationary Excitation,” ASME J. Appl. Mech., 51(4), pp. 907–912. 10.1115/1.3167745
Dekker, H., 1976, “Time-Local Gaussian Processes, Path Integrals and Nonequilibrium Nonlinear Diffusion,” Physica, 85A(2), pp. 363–373. 10.1016/0378-4371(76)90055-8
Iourtchenko, D., Mo, E., and Naess, A., 2008, “Reliability of Strongly Nonlinear Single Degree of Freedom Dynamic Systems by the Path Integration Method,” J. Appl. Mech., 75(6), pp. 061016-1–061016-8. 10.1115/1.2967896
Chatterjee, P., and Basu, B., 2006, “Nonstationary Seismic Response of a Tank on a Bilinear Hysteretic Soil Using Wavelet Transform,” Probab. Eng. Mech., 21(1), pp. 54–63. 10.1016/j.probengmech.2005.07.004
Spanos, P. D., and Giaralis, A., 2013, “Third-Order Statistical Linearization-Based Approach to Derive Equivalent Linear Properties of Bilinear Hysteretic Systems for Seismic Response Spectrum Analysis,” Struct. Saf., 44, pp. 59–69. 10.1016/j.strusafe.2012.12.001
Iwan, W. D., 1965, “The Steady-State Response of a Two-Degree-of-Freedom Bilinear Hysteretic System,” J. Appl. Mech., 32(1), pp. 151–156. 10.1115/1.3625711
Caughey, T. K., 1960, “Random Excitation of a System with Bilinear Hysteresis,” J. Appl. Mech., 27(4), pp. 649–652. 10.1115/1.3644077

Figures

Grahic Jump Location
Fig. 1

Nonstationary response variance c(t) of a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=0.2 (Case 1) and S0=0.0637, ω02=1, β0=0.2, ε=1 (Case 2); comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 2

Time-varying equivalent linear natural frequency ωeq(t) for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=0.2 (Case 1) and S0=0.0637, ω02=1, β0=0.2, ε=1 (Case 2).

Grahic Jump Location
Fig. 3

Response displacement PDF for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=0.2 (Case 1) for various time instants; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 4

Response displacement PDF for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=1 (Case 2) for various time instants; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 5

Survival probability for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=0.2 (Case 1) for various barrier levels; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 6

First-passage PDF for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=0.2 (Case 1) for various barrier levels; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 7

Survival probability for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=1 (Case 2) for various barrier levels; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 8

First-passage PDF for a Duffing oscillator under white noise excitation with parameter values S0=0.0637, ω02=1, β0=0.2, ε=1 (Case 2) for various barrier levels; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 9

Nonstationary response variance c(t) of a bilinear hysteretic oscillator under white noise excitation with parameter values S0=0.0637, a=0.6, β0=0.1, ω0=1, xy=1; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 10

Time-varying equivalent linear natural frequency ωeq(t) for a bilinear hysteretic oscillator under white noise excitation with parameter values S0=0.0637, a=0.6, β0=0.1, ω0=1, xy=1.

Grahic Jump Location
Fig. 11

Time-varying equivalent linear damping βeq(t) for a bilinear hysteretic oscillator under white noise excitation with parameter values S0=0.0637, a=0.6, β0=0.1, ω0=1, xy=1.

Grahic Jump Location
Fig. 12

Response displacement PDF for a bilinear oscillator under white noise excitation with parameter values S0=0.0637, a=0.6, β0=0.1, ω0=1, xy=1 for various time instants; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 13

Survival probability for a bilinear hysteretic oscillator under white noise excitation with parameter values S0=0.0637, a=0.6, β0=0.1, ω0=1, xy=1 for various barrier levels; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Grahic Jump Location
Fig. 14

First-passage PDF for a bilinear hysteretic oscillator under white noise excitation with parameter values S0=0.0637, a=0.6, β0=0.1, ω0=1, xy=1 for various barrier levels; comparison with pertinent Monte Carlo simulations (10,000 realizations).

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Articles from Part A: Civil Engineering
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In