Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993, Fractional Integrals and Derivatives: Theory and Application, Gordon and Breach Science Publishers, Langhorne, PA.

Miller, K. S., and Ross, B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York.

Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press, New York.

Kiryakova, V. S., 1993, Generalized Fractional Calculus and Applications, Longman Scientiﬁc and Technical, London.

Podlubny, I., 1999, Fractional Differential Equations, Academic Press, New York.

Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J., 2006, Theory and Applications of Fractional Differential Equations, Elsevier, New York.

Suarez, L. E., and Shokooh, A., 1997, “An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives,” ASME J. Appl. Mech., 64(3), pp. 629–635.

[CrossRef]Yuan, L., and Agrawal, O. P., 2002, “A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives,” ASME J. Vib. Acoust., 124(2), pp. 321–324.

10.1115/1.1448322Behera, D., and Chakraverty, S., 2013, “Numerical Solution of Fractionally Damped Beam by Homotopy Perturbation Method,” Cent. Eur. J. Phys., 11(6), pp. 792–798.

10.2478/s11534-013-0201-9Chakraverty, S., and Behera, D., 2013, “Dynamic Responses of Fractionally Damped Mechanical System Using Homotopy Perturbation Method,” Alexandria Eng. J., 52(3), pp. 557–562.

10.1016/j.aej.2013.04.007Odibat, Z. M., and Momani, S., 2008, “An Algorithm for the Numerical Solution of Differential Equations of Fractional Order,” J. Appl. Math. Inf., 26(1–2), pp. 15–27.

Jumarie, G., 2009, “Table of Some Basic Fractional Calculus Formulae Derived From a Modified Riemann-Liouville Derivative for Non-Differentiable Functions,” Appl. Math. Lett., 22(3), pp. 378–385.

10.1016/j.aml.2008.06.003Wei, Z., Li, Q., and Che, J., 2010, “Initial Value Problems for Fractional Differential Equations Involving Riemann-Liouville Sequential Fractional Derivative,” J. Math. Anal. Appl., 367(1), pp. 260–272.

10.1016/j.jmaa.2010.01.023Qian, D., Li, C., Agarwal, R. P., and Wong, P. J. Y., 2010, “Stability Analysis of Fractional Differential System With Riemann-Liouville Derivative,” Math. Comput. Modell., 52(5–6), pp. 862–874.

10.1016/j.mcm.2010.05.016Rahimy, M., 2010, “Applications of Fractional Differential Equations,” Appl. Math. Sci., 4(50), pp. 2453–2461.

Hanss, M., and Turrin, S., 2010, “A Fuzzy-Based Approach to Comprehensive Modelling and Analysis of Systems With Epistemic Uncertainties,” Struct. Saf., 32(6), pp. 433–441.

10.1016/j.strusafe.2010.06.003Rao, M. V. R., Pownuk, A., Vandewalle, S., and Moens, D., 2010, “Transient Response of Structures With Uncertain Structural Parameters,” Struct. Saf., 32(6), pp. 449–460.

10.1016/j.strusafe.2010.05.001Farkas, L., Moens, D., Donders, S., and Vandepitte, D., 2012, “Optimisation Study of a Vehicle Bumper Subsystem With Fuzzy Parameters,” Mech. Syst. Signal Process., 32, pp. 59–68.

10.1016/j.ymssp.2011.11.014Behera, D., and Chakraverty, S., 2013, “Fuzzy Analysis of Structures With Imprecisely Defined Properties,” Comput. Model. Eng. Sci., 96(5), pp. 317–337.

Behera, D., and Chakraverty, S., 2013, “Fuzzy Finite Element Analysis of Imprecisely Defined Structures With Fuzzy Nodal Force,” Eng. Appl. Artif. Intell., 26(10), pp. 2458–2466.

10.1016/j.engappai.2013.07.021Behera, D., and Chakraverty, S., 2014, “Solving Fuzzy Complex System of Linear Equations,”Inf. Sci., 277, pp. 154–162.

10.1016/j.ins.2014.02.014Tapaswini, S., and Chakraverty, S., 2014, “Non-Probabilistic Solution of Uncertain Vibration Equation of Large Membranes Using Adomian Decomposition Method,” Sci. World J., 2014, pp. 1–11.

10.1155/2014/308205Agrawal, R. P., Lakshmikantham, V., and Nieto, J. J., 2010, “On the Concept of Solution for Fractional Differential Equations With Uncertainty,” Nonlinear Anal., 72(6), pp. 2859–2862.

10.1016/j.na.2009.11.029Arshad, S., and Lupulescu, V., 2011, “On the Fractional Differential Equations With Uncertainty,” Nonlinear Anal., 74(11), pp. 3685–3693.

10.1016/j.na.2011.02.048Mohammed, O. H., Fadhel, S. F., and Fajer, A. A. K., 2011, “Differential Transform Method for Solving Fuzzy Fractional Initial Vale Problems,” J. Basrah Res., 37(4), pp. 158–170.

Wang, H., and Liu, Y., 2011, “Existence Results for Fractional Fuzzy Differential Equations With Finite Delay,” Int. Math. Forum, 6(51), pp. 2535–2538.

Salahshour, S., Allahviranloo, T., and Abbasbandy, S., 2012, “Solving Fuzzy Fractional Differential Equations by Fuzzy Laplace Transforms,” Commun. Nonlinear Sci. Numer. Simul., 17(3), pp. 1372–1381.

10.1016/j.cnsns.2011.07.005Karthikeyan, K., and Chandran, C., 2011, “Existence Results for Functional Fractional Fuzzy Impulsive Differential Equations,” Int. J. Contemp. Math. Sci., 6(39), pp. 1941–1954.

Jeong, J. U., 2010, “Existence Results for Fractional Order Fuzzy Differential Equations With Inﬁnite Delay,” Int. Math. Forum, 5(65), pp. 3221–3230.

Ahmad, M. Z., Hasan, M. K., and Abbasbandy, S., 2013, “Solving Fuzzy Fractional Differential Equations Using Zadeh’s Extension Principle,” Sci. World J., 2013, pp. 1–11.

10.1155/2013/454969.

He, J. H., 2000, “A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems,” Int. J. Nonlinear Mech., 35(1), pp. 37–43.

10.1016/S0020-7462(98)00085-7Ross, T. J., 2004, Fuzzy Logic With Engineering Applications, John Wiley & Sons, New York.

Zimmermann, H. J., 2001, Fuzzy Set Theory and its Application, Kluwer Academic Publishers, London.

Zu-feng, L., and Xiao-yan, T., 2007, “Analytical Solution of Fractionally Damped Beam by Adomian Decomposition Method,” Appl. Math. Mech., 28(2), pp. 219–228.

10.1007/s10483-007-0210-zs