Technical Brief

Filtering Algorithm for Real Eigenvalue Bounds of Interval and Fuzzy Generalized Eigenvalue Problems

[+] Author and Article Information
Nisha Rani Mahato

Department of Mathematics,
National Institute of Technology Rourkela,
Rourkela, Odisha 769008, India

S. Chakraverty

Department of Mathematics,
National Institute of Technology Rourkela,
Rourkela, Odisha 769008, India
e-mail: sne_chak@yahoo.com

Manuscript received July 12, 2015; final manuscript received March 9, 2016; published online August 19, 2016. Assoc. Editor: Athanasios Pantelous.

ASME J. Risk Uncertainty Part B 2(4), 044502 (Aug 19, 2016) (8 pages) Paper No: RISK-15-1085; doi: 10.1115/1.4032958 History: Received July 12, 2015; Accepted March 09, 2016

This paper deals with an interval and fuzzy generalized eigenvalue problem involving uncertain parameters. Based on a sufficient regularity condition for intervals, an interval filtering eigenvalue procedure for generalized eigenvalue problems with interval parameters is proposed, which iteratively eliminates the parts that do not contain an eigenvalue and thus reduces the initial eigenvalue bound to a precise bound. The same iterative procedure has been proposed for generalized fuzzy eigenvalue problems. In general, the solution of dynamic problems of structures using the finite element method (FEM) leads to a generalized eigenvalue problem. Based on the proposed procedures, various structural examples with an interval and fuzzy parameter such as triangular fuzzy number (TFN) are investigated to show the efficiency of the algorithms stated. Finally, fuzzy filtered eigenvalue bounds are depicted by fuzzy plots using the α-cut.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Gerald, C. F., and Wheatley, P. O., 2009, Applied Numerical Analysis, Dorling Kindersley Pvt. Ltd., New Delhi.
Bhat, R. B., and Chakraverty, S., 2007, Numerical Analysis in Engineering, Alpha Science International Ltd., New Delhi.
Humar, J. L., 2012, Dynamics of Structures, CRC Press, London.
Seshu, P., 2003, Textbook of Finite Element Analysis, PHI Learning Pvt. Ltd, New Delhi.
Alefeld, G., and Herzberger, J., 1984, Introduction to Interval Computation, Academic Press, London.
Moore, R. E., Kearfott, R. B., and Cloud, M. J., 2009, Introduction to Interval Analysis, SIAM Publications, Philadelphia.
Rohn, J., 2005, A Handbook of Results on Interval Linear Problems, accessed 20 Oct. 2014, http://www.nsc.ru/interval/Library/Surveys/ILinProblems.pdf.
Rohn, J., 1998, “Bounds on Eigenvalues of Interval Matrices,” ZAMM J. Appl. Math. Mech., 78(S3), pp. 1049–1050. 10.1002/zamm.v78.15s
Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., 2001, Applied Interval Analysis-With Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, London.
Rex, G., and Rohn, J., 1998, “Sufficient Conditions for Regularity and Singularity of Interval Matrices,” SIAM J. Matrix Anal. Appl., 20(2), pp. 437–445. 10.1137/S0895479896310743
Hladik, M., Daney, D., and Tsigaridas, E., 2011, “A Filtering Method for the Interval Eigenvalue Problem,” Appl. Math. Comput., 217(12), pp. 5236–5242. 0096-3003 10.1016/j.amc.2010.09.066
Leng, H., 2014, “Real Eigenvalue Bounds of Standard and Generalized Real Interval Eigenvalue Problems,” Appl. Math. Comput., 232(Apr.), pp. 164–171. 0096-3003 10.1016/j.amc.2014.01.070
Qiu, Z., Chen, S., and Jia, H., 1995, “The Rayleigh Quotient Iteration Method for Computing Eigenvalue Bounds of Structures With Bounded Uncertain Parameters,” Comput. Struct., 55(2), pp. 221–227. 0045-7949 10.1016/0045-7949(94)00444-8
Qiu, Z., Wang, X., and Friswell, M. I., 2005, “Eigenvalue Bounds of Structures With Uncertain-But-Bounded Parameters,” J. Sound Vibr., 282(1–2), pp. 297–312. 0022-460X 10.1016/j.jsv.2004.02.051
Sim, J., Qiu, Z., and Wang, X., 2007, “Modal Analysis of Structures With Uncertain but Bounded Parameters via Interval Analysis,” J. Sound Vibr., 303(1–2), pp. 29–45. 0022-460X 10.1016/j.jsv.2006.11.038
Leng, H., He, Z., and Yuan, Q., 2008, “Computing Bounds to Real Eigenvalues of Real Interval Matrices,” Int. J. Numer. Methods Eng., 74(4), pp. 523–530. 0029-5981 10.1002/(ISSN)1097-0207
Leng, H., and He, Z., 2010, “Computation of Bounds for Eigenvalues of Structures With Interval Parameters,” Appl. Math. Comput., 216(9), pp. 2734–2739. 0096-3003 10.1016/j.amc.2010.03.121
Hladik, M., 2013, “Bounds on Eigenvalues of Real and Complex Interval Matrices,” Appl. Math. Comput., 219(10), pp. 5584–5591. 0096-3003 10.1016/j.amc.2012.11.075
Leng, H., and He, Z., 2007, “Computing Eigenvalue Bounds of Structures With Uncertain-But-Non-Random Parameters by a Method Based on Perturbation Theory,” Commun. Numer. Methods Eng., 23(11), pp. 973–982. 0748-8025 10.1002/cnm.936
Qiu, Z., Chen, S., and Elishakoff, I., 1996, “Bounds of Eigenvalues for Structures With an Interval Description of Uncertain But-Non-Random Parameters,” Chaos Solitons Fractals, 7(3), pp. 425–434. 10.1016/0960-0779(95)00065-8
Xia, Y., and Friswell, M., 2014, “Efficient Solution of the Fuzzy Eigenvalue Problem in Structural Dynamics,” Eng. Comput., 31(5), pp. 864–878. 10.1108/EC-02-2013-0052
Horn, R. A., and Johnson, C. R., 1985, Matrix Analysis, Cambridge University Press, Cambridge, U.K.
Horn, R. A., and Johnson, C. R., 1994, Topics in Matrix Analysis, Cambridge University Press, Cambridge, U.K.
Hogben, L., 2006, Handbook of Linear Algebra, CRC Press, London.


Grahic Jump Location
Fig. 1

Triangular fuzzy number

Grahic Jump Location
Fig. 2

Multistory frame structure

Grahic Jump Location
Fig. 6

Plot of fourth eigenvalue bounds

Grahic Jump Location
Fig. 7

Plot of fifth eigenvalue bounds

Grahic Jump Location
Fig. 3

Plot of first eigenvalue bounds

Grahic Jump Location
Fig. 4

Plot of second eigenvalue bounds

Grahic Jump Location
Fig. 5

Plot of third eigenvalue bounds




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Articles from Part A: Civil Engineering
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In