Park, R. S., and Scheeres, D. J., 2007, “Nonlinear Semi-Analytic Methods for Trajectory Estimation,” J. Guid. Control Dyn., 30(6), pp. 1668–1676. 0731-5090
10.2514/1.29106Park, R. S., and Scheeres, D. J., 2006, “Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design,” J. Guid. Control Dyn., 29(6), pp. 1367–1375. 0731-5090
10.2514/1.20177Younes, A. B., and Turner, J., 2012, “High-Order Uncertainty Propagation Using State Transition Tensor Series,” Jer-Nan Juang Astrodynamics Symposium, Univelt, Inc., San Diego, CA, No. AAS 12-636.
Turner, J., and Younes, A. B., 2013, “On the Expected Value of Sensed Data,” 23rd AAS/AIAA Space Flight Mechanics Meeting, Univelt, Inc., San Diego, CA, No. AAS 13-377.
Younes, A. B., Turner, J., Majji, M., and Junkins, J., 2012, “Recent Advances in Algorithmic Differentiation,” High-Order Uncertainty Propagation Enabled by Computational Differentiation, S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, eds., Springer, Berlin/Heidelberg, pp. 251–260.
Younes, A. B., and Turner, J., 2015, “System Uncertainty Propagation Using Automatic Differentiation,” Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition: Dynamics, Vibration, and Control, ASME, Houston, TX, Nov. 13–19, Vol. 4A, Paper No. IMECE2015-51412.
Griffith, D. T., Turner, J. D., and Junkins, J. L., 2004, “An Embedded Function Tool for Modeling and Simulating Estimation Problems in Aerospace Engineering,” AAS/AIAA Spaceflight Mechanics Meeting, Univelt, Inc., San Diego, CA, No. AAS 04-148.
Griffith, D. T., Sinclair, A., Turner, J. D., Hurtado, J., and John, J., 2004, “Automatic Generation and Integration of Equations of Motion by Operator Overloading Techniques,” AAS/AIAA Spaceflight Mechanics Meeting, Univelt, Inc., San Diego, CA, No. AAS 04-242.
Majji, M., Junkins, J., and Turner, J., 2008, “A High Order Method for Estimation of Dynamic Systems,” J. Astronaut. Sci., 56(3), pp. 401–440. 0021-9142
10.1007/BF03256560Majji, M., Junkins, J., and Turner, J., 2010, “A Perturbation Method for Estimation of Dynamic Systems,” Nonlinear Dyn., 60(3), pp. 303–325. 0924-090X
10.1007/s11071-009-9597-6Xiu, D., 2010, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, NJ.
Fujimoto, K., Scheeres, D., and Alfriend, K., 2012, “Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem,” J. Guid. Control Dyn., 35(2), pp. 497–509. 0731-5090
10.2514/1.54385Majji, M., Weisman, R., and Alfriend, K., 2012, “Solution of the Liouvilles Equation for Keplerian Motion: Application to Uncertainty Calculations,” 22nd AAS/AIAA Space Flight Mechanics Meeting, Univelt, Inc., San Diego, CA, Vol. 143.
Turner, J. D., Majji, M., and Junkins, J. L., 2011, “Keynote Paper: High Accuracy Trajectory and Uncertainty Propagation Algorithm for Long-Term Asteroid Motion Prediction,” Proceedings of the International Conference on Computational and Experimental Engineering and Sciences, Nanjing, China, Apr. 17–21.
Bischof, C. H., Carle, A., Hovland, P. D., Khademi, P., and Mauer, A., 1998, “ADIFOR 2.0 User’s Guide (Revision D),” Mathematics and Computer Science Division, Technical Memorandum No. 192, and Center for Research on Parallel Computation, Technical Report CRPC-95516-S.
Griewank, A., 1989, “On Automatic Differentiation,” Mathematical Programming, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 83–108.
Wengert, R. E., 1964, “A Simple Automatic Derivative Evaluation Program,” Commun. ACM, 7(8), pp. 463–464. 0001-0782
10.1145/355586.364791Wilkins, R. D., 1964, “Investigation of a New Analytical Method for Numerical Derivative Evaluation,” Commun. ACM, 7(8), pp. 465–471. 0001-0782
10.1145/355586.364792Bischof, C., and Eberhard, P., 1996, “Automatic Differentiation of Numerical Integration Algorithms,” Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, Tech. Rep. ANL/MCS-P621-1196.
Bischof, C., Carle, A., Corliss, G., Griewank, A., and Hovland, P., 1992, “Adifor: Generating Derivative Codes From Fortran Programs,” Sci. Programm., 1(1), pp. 1–29.
Turner, J. D., 2003, “Automated Generation of High-Order Partial Derivative Models,” AIAA J., 41(8), pp. 1590–1598. 0001-1452
10.2514/2.2112Griffith, D. T., Turner, J. D., and Junkins, J. L., 2005, “Automatic Generation and Integration of Equation of Motion for Flexible Multibody Dynamical Systems,” AAS J. Astronaut. Sci., 53(3), pp. 251–279.
Younes, A. B., Turner, J., Majji, M., and Junkins, J., 2010, “An Investigation of State Feedback Gain Sensitivity Calculations,” AIAA/AAS Astrodynamics Specialist Conference: Guidance, Navigation, and Control, No. AIAA-2010-8274.
Younes, A. B., and Turner, J., 2012, “Numerical Integration of Constrained Multi-Body Dynamics Using 5th Order Exact Analytic Continuation Algorithm,” Jer-Nan Juang Astrodynamics Symposium, Univelt, Inc., San Diego, CA, No. AAS 12-638.
Younes, A. B., Turner, J., Majji, M., and Junkins, J., 2012, “High-Order State Feedback Gain Sensitivity Calculations: Using Computational Differentiation,” Jer-Nan Juang Astrodynamics Symposium, Univelt, Inc., San Diego, CA, No. AAS 12-637.
Younes, A. B., Turner, J., Majji, M., and Junkins, J., 2011, “Nonlinear Tracking Control of Maneuvering Rigid Spacecraft,” No. AAS 11-168, Advances in the Astronautical Sciences, Univelt, Inc., San Diego, CA, Vol. 140.
Younes, A. B., and Turner, J., 2015, “Generalized Least Squares and Newton’s Method Algorithms for Nonlinear Root-Solving Applications,” J. Astronaut. Sci., 60(3), pp. 517–540. 0021-9142
Younes, A. B., and Turner, J., 2015, “Feedback Control Sensitivity Calculations Using Computational Differentiation,” Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition: Dynamics, Vibration, and Control, ASME, Houston, TX, Vol. 4B, No. IMECE2015-51439.
Younes, A. B., and Turner, J., 2014, “An Analytic Continuation Method to Integrate Constrained Multibody Dynamical Systems,” Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition: Dynamics, Vibration, and Control, ASME, Montreal, QC, Nov. 14–20, Vol. 4B, No. IMECE2014-37809.
Younes, A. B., Turner, J., and Junkins, J., 2013, “Higher-Order Optimal Tracking Feedback Gain Sensitivity Calculations: Using Computational Differentiation,” Proceedings of the 36th Annual AAS Rocky Mountain Section Guidance and Control Conference, Univelt, Inc., San Diego, CA, No. AAS 13-017.
Macsyma, Inc., 1995, Macsyma, Symbolic/Numeric/Graphical Mathematics Software: Mathematics and System Reference Manual, 15th ed, Macsyma, Inc.
Turner, J., 2006, OCEA User Manual, AMDYN SYSTEMS Inc., Plano, TX.
Hahn, T., 2005, “Cubaa Library for Multidimensional Numerical Integration,” Comput. Phys. Commun., 168(2), pp. 78–95. 0010-4655
10.1016/j.cpc.2005.01.010