Stewart, M. G., and Rosowsky, D. V., 1998, “Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks,” Struct. Saf., 20(1), pp. 91–109.

10.1016/S0167-4730(97)00021-0Kuschel, N., and Rackwitz, R., 2000, “Optimal Design Under Time-Variant Reliability Constraints,” Struct. Saf., 22(2), pp. 113–127.

10.1016/S0167-4730(99)00043-0Hagen, O., and Tvedt, L., 1992, “Parallel System Approach for Vector Out-Crossing,” ASME J. Offshore Mech. Arct. Eng., 114(2), pp. 122–128.

10.1115/1.2919959Hu, Z., and Du, X., 2012, “Reliability Analysis for Hydrokinetic Turbine Blades,” Renewable Energy, 48(Dec.), pp. 251–262. 0960-1481

10.1016/j.renene.2012.05.002Andrieu-Renaud, C., Sudret, B., and Lemaire, M., 2004, “The PHI2 Method: A Way to Compute Time-Variant Reliability,” Reliab. Eng. Syst. Saf., 84(1), pp. 75–86.

[CrossRef]Singh, A., and Mourelatos, Z. P., 2010, “On the Time-Dependent Reliability of Non-Monotonic, Non-Repairable Systems,” SAE Int. J. Mater. Manuf., 3(2010-01-0696), pp. 425–444.

10.4271/2010-01-0696Singh, A., Mourelatos, Z., and Nikolaidis, E., 2011, “Time-Dependent Reliability of Random Dynamic Systems Using Time-Series Modeling and Importance Sampling,” SAE Int. J. Mater. Manuf., 4(1), 929–946.

10.4271/2011-01-0728Wang, Z., Mourelatos, Z. P., Li, J., Baseski, I., and Singh, A., 2014, “Time-Dependent Reliability of Dynamic Systems Using Subset Simulation With Splitting Over a Series of Correlated Time Intervals,” ASME J. Mech. Des., 136(6), p. 061008.

10.1115/1.4027162Mori, Y., and Ellingwood, B. R., 1993, “Time-Dependent System Reliability Analysis by Adaptive Importance Sampling,” Struct. Saf., 12(1), pp. 59–73.

10.1016/0167-4730(93)90018-VWang, Z., and Wang, P., 2012, “A Nested Extreme Response Surface Approach for Time-Dependent Reliability-Based Design Optimization,” ASME J. Mech. Des., 134(12), p. 121007.

10.1115/1.4007931Hu, Z., and Du, X., 2015, “Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis,” ASME J. Mech. Des., 137(5), p. 051401.

10.1115/1.4029520Sudret, B., and Der Kiureghian, A., 2000, “Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report,” Department of Civil and Environmental Engineering, University of California.

Huang, S., Mahadevan, S., and Rebba, R., 2007, “Collocation-Based Stochastic Finite Element Analysis for Random Field Problems,” Probab. Eng. Mech., 22(2), pp. 194–205. 0266-8920

10.1016/j.probengmech.2006.11.004Hu, Z., Mahadevan, S., and Du, X., 2015, “Uncertainty Quantification in Time-Dependent Reliability Analysis,” ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Aug. 2–7, American Society of Mechanical Engineers, Boston, MA, pp. V02BT03A062–V02BT03A062.

Hu, Z., Mahadevan, S., and Du, X., 2016, “Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty,” ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng., 2(3), p. 031005.

10.1115/1.4032307Ling, Y., Shantz, C., Mahadevan, S., and Sankararaman, S., 2011, “Stochastic Prediction of Fatigue Loading Using Real-Time Monitoring Data,” Int. J. Fatigue, 33(7), pp. 868–879. 0142-1123

10.1016/j.ijfatigue.2011.01.015Ling, Y., and Mahadevan, S., 2012, “Integration of Structural Health Monitoring and Fatigue Damage Prognosis,” Mech. Syst. Signal Process., 28(Apr.), pp. 89–104.

10.1016/j.ymssp.2011.10.001Wang, P., and Billinton, R., 2001, “Reliability Benefit Analysis of Adding WTG to a Distribution System,” IEEE Trans. Energy Convers., 16(2), pp. 134–139. 0885-8969

10.1109/60.921464Gupta, S., Shabakhty, N., and van Gelder, P., 2006, “Fatigue Damage in Randomly Vibrating Jack-up Platforms Under Non-Gaussian Loads,” Appl. Ocean Res., 28(6), pp. 407–419. 0141-1187

10.1016/j.apor.2007.02.001Yang, L., and Gurley, K. R., 2015, “Efficient Stationary Multivariate NonGaussian Simulation Based on a Hermite PDF Model,” Probab. Eng. Mech., 42(Oct.), pp. 31–41. 0266-8920

10.1016/j.probengmech.2015.09.006Li, W., and McLeod, A., 1981, “Distribution of the Residual Autocorrelations in Multivariate ARMA Time Series Models,” J. Royal Stat. Soc. Ser. B, 43(2), pp. 231–239. 0035-9246

Boudjellaba, H., Dufour, J.-M., and Roy, R., 1994, “Simplified Conditions for Noncausality Between Vectors in Multivariate ARMA Models,” J. Econometrics, 63(1), pp. 271–287.

10.1016/0304-4076(93)01568-7Garel, B., and Hallin, M., 1995, “Local Asymptotic Normality of Multivariate ARMA Processes with a Linear Trend,” Ann. Inst. Stat. Math., 47(3), pp. 551–579. 0020-3157

Jiang, C., Zhang, W., Han, X., Ni, B., and Song, L., 2015, “A Vine-Copula-Based Reliability Analysis Method for Structures With Multidimensional Correlation,” ASME J. Mech. Des., 137(6), p. 061405.

10.1115/1.4030179Bedford, T., and Cooke, R. M., 2002, “Vines: A New Graphical Model for Dependent Random Variables,” Ann. Stat., 30(4), pp. 1031–1068. 0090-5364

[CrossRef]Joe, H., 1994, “Multivariate Extreme-Value Distributions With Applications to Environmental Data,” Can. J. Stat., 22(1), pp. 47–64.

10.2307/3315822Cooke, R. M., “Markov and Entropy Properties of Tree-and Vine-Dependent Variables,” Proceedings of the ASA Section of Bayesian Statistical Science.

Cooke, R. M., and Goossens, L. H., 2004, “Expert Judgement Elicitation for Risk Assessments of Critical Infrastructures,” J. Risk Res., 7(6), pp. 643–656.

10.1080/1366987042000192237Hu, Z., and Mahadevan, S., 2016, “A Single-Loop Kriging Surrogate Modeling for Time-Dependent Reliability Analysis,” ASME J. Mech. Des., 138(6), 061406.

10.1115/1.4033428Hu, Z., and Du, X., 2015, “First Order Reliability Method for Time-Variant Problems Using Series Expansions,” Struct. Multidiscip. Optim., 51(1), pp. 1–21. 1615-1488

10.1007/s00158-014-1132-9Shumway, R. H., and Stoffer, D. S., 2009, Time Series Analysis and Its Applications, Springer, New York.

Cochrane, J. H., 2005, “Time Series for Macroeconomics and Finance,” Manuscript, University of Chicago.

Joe, H., 1997, Multivariate Models and Multivariate Dependence Concepts, CRC Press, London.

Sklar, M., 1959, “Fonctions de répartition à n dimensions et leurs marges,” Université Paris 8.

Deng, S.-J., and Jiang, W., 2005, “Levy Process-Driven Mean-Reverting Electricity Price Model: The Marginal Distribution Analysis,” Decis. Support Syst., 40(3), pp. 483–494.

[CrossRef]Kirchler, M., and Huber, J., 2007, “Fat Tails and Volatility Clustering in Experimental Asset Markets,” J. Econ. Dyn. Control, 31(6), pp. 1844–1874.

[CrossRef]Ditlevsen, O., Olesen, R., and Mohr, G., 1986, “Solution of a Class of Load Combination Problems by Directional Simulation,” Struct. Saf., 4(2), pp. 95–109.

10.1016/0167-4730(86)90025-1Ditlevsen, O., and Madsen, H. O., 1996, Structural Reliability Methods, Wiley, New York.

Aas, K., Czado, C., Frigessi, A., and Bakken, H., 2009, “Pair-Copula Constructions of Multiple Dependence,” Insurance: Math. Econ., 44(2), pp. 182–198.

[CrossRef]Bedford, T., and Cooke, R. M., 2001, “Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines,” Ann. Math. Artif. Intell., 32(1–4), pp. 245–268. 1012-2443

10.1023/A:1016725902970Dissmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D., 2013, “Selecting and Estimating Regular Vine Copulae and Application to Financial Returns,” Comput. Stat. Data Anal., 59, pp. 52–69. 0167-9473

10.1016/j.csda.2012.08.010Joe, H., 1996, Families of m-Variate Distributions With Given Margins and m (m-1)/2 Bivariate Dependence Parameters, Lecture Notes-Monograph Series , Institute of Mathematical Statistics, Hayward, CA, vol. 28, pp. 120–141.

Kurowicka, D., and Cooke, R. M., 2006, Uncertainty Analysis With High Dimensional Dependence Modelling, Wiley, Chichester.

Singh, N., 1994, “Forecasting Time-Dependent Failure Rates of Systems Operating in Series and/or in Parallel,” Microelectron. Reliab., 34(3), pp. 391–403. 0026-2714

10.1016/0026-2714(94)90080-9Czado, C., Brechmann, E. C., and Gruber, L., 2013, “Selection of Vine Copulas,” Copulae in Mathematical and Quantitative Finance, Springer, Berlin/Heidelberg, pp. 17–37.

Rosenblatt, M., 1952, “Remarks on a Multivariate Transformation,” Ann. Math. Stat., 23, pp. 470–472. 0003-4851

10.1214/aoms/1177729394Noh, Y., Choi, K., and Du, L., 2009, “Reliability-Based Design Optimization of Problems With Correlated Input Variables Using a Gaussian Copula,” Struct. Multidiscip. Optim., 38(1), pp. 1–16. 1615-1488

10.1007/s00158-008-0277-9Zhang, J., and Du, X., 2011, “Time-Dependent Reliability Analysis for Function Generator Mechanisms,” ASME J. Mech. Des., 133(3), p. 031005.

10.1115/1.4003539Li, J., and Mourelatos, Z. P., 2009, “Time-Dependent Reliability Estimation for Dynamic Problems Using a Niching Genetic Algorithm,” ASME J. Mech. Des., 131(7), p. 071009.

10.1115/1.3149842Echard, B., Gayton, N., and Lemaire, M., 2011, “AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation,” Struct. Saf., 33(2), pp. 145–154.

10.1016/j.strusafe.2011.01.002Hu, Z., and Mahadevan, S., 2016, “Global Sensitivity Analysis-Enhanced Surrogate (GSAS) Modeling for Reliability Analysis,” Struct. Multidiscip. Optim., 53(3), pp. 501–521. 1615-1488

10.1007/s00158-015-1347-4Hu, Z., Li, H., Du, X., and Chandrashekhara, K., 2013, “Simulation-Based Time-Dependent Reliability Analysis for Composite Hydrokinetic Turbine Blades,” Struct. Multidiscip. Optim., 47(5), pp. 765–781. 1615-1488

10.1007/s00158-012-0839-8Hu, Z., and Du, X., 2013, “Reliability Analysis for Hydrokinetic Turbine Blades Under Random River Velocity Field,” Proceedings of the 7th Annual ISC Research Symposium, ISCRS 2013, April 23, Intelligent System Center, Missouri University of Science and Technology, Rolla, MO.

Ramsay, R. R., Hoffmann, M., and Gregorek, G., 1999, “Effects of Grit Roughness and Pitch Oscillations on the S809 Airfoil: Airfoil Performance Report. Revised (12/99),” , Ohio State University, December, National Renewable Energy Laboratory (NREL).

Rasmussen, C. E., 2006, Gaussian Processes for Machine Learning, MIT Press, Golden, CO.

Lophaven, S. N., Nielsen, H. B., and Søndergaard, J., 2002, “DACE-A Matlab Kriging Toolbox, Version 2.0.” , Technical University of Denmark.