Oden,
T.
,
Moser,
R.
, and
Ghattas,
O.
, 2010, “
Computer Predictions With Quantified Uncertainty—Part I,” SIAM News,
43(9), pp. 1–3.

Oden,
T.
,
Moser,
R.
, and
Ghattas,
O.
, 2010, “
Computer Predictions With Quantified Uncertainty—Part II,” SIAM News,
43(10), pp. 1–4.

Lemaitre,
J.
, and
Desmorat,
R.
, 2005, Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures,
Springer Science & Business Media, Berlin.

Lemaitre,
J.
, 2012, A Course on Damage Mechanics,
Springer Science & Business Media, Berlin.

Mashayekhi,
M.
,
Taghipour,
A.
,
Askari,
A.
, and
Farzin,
M.
, 2013, “
Continuum Damage Mechanics Application in Low-Cycle Thermal Fatigue,” Int. J. Damage Mech.,
22(2), pp. 285–300.

[CrossRef]
Yu,
T.
, 2016, “
Continuum Damage Mechanics Models and their Applications to Composite Components of Aero-Engines,” Ph.D. thesis, University of Nottingham, Nottingham, UK.

McDowell,
D.
, and
Dunne,
F.
, 2010, “
Microstructure-Sensitive Computational Modeling of Fatigue Crack Formation,” Int. J. Fatigue,
32(9), pp. 1521–1542.

[CrossRef]
Dingreville,
R.
,
Battaile,
C. C.
,
Brewer,
L. N.
,
Holm,
E. A.
, and
Boyce,
B. L.
, 2010, “
The Effect of Microstructural Representation on Simulations of Microplastic Ratcheting,” Int. J. Plasticity,
26(5), pp. 617–633.

[CrossRef]
Bolotin,
V.
, and
Belousov,
I.
, 2001, “
Early Fatigue Crack Growth as the Damage Accumulation Process,” Probab. Eng. Mech.,
16(4), pp. 279–287.

[CrossRef]
Lardner,
R.
, 1967, “
A Theory of Random Fatigue,” J. Mech. Phys. Solids,
15(3), pp. 205–221.

[CrossRef]
Birnbaum,
Z.
, and
Saunders,
S. C.
, 1958, “
A Statistical Model for Life-Length of Materials,” J. Am. Stat. Assoc.,
53(281), pp. 151–160.

[CrossRef]
Ortiz,
K.
, and
Kiremidjian,
A. S.
, 1988, “
Stochastic Modeling of Fatigue Crack Growth,” Eng. Fract. Mech.,
29(3), pp. 317–334.

[CrossRef]
Yang,
J.
,
Salivar,
G.
, and
Annis,
C.
, 1983, “
Statistical Modeling of Fatigue-Crack Growth in a Nickel-Base Superalloy,” Eng. Fract. Mech.,
18(2), pp. 257–270.

[CrossRef]
Shen,
H.
,
Lin,
J.
, and
Mu,
E.
, 2000, “
Probabilistic Model on Stochastic Fatigue Damage,” Int. J. Fatigue,
22(7), pp. 569–572.

[CrossRef]
Correia,
J.
,
Apetre,
N.
,
Arcari,
A.
,
De Jesus,
A.
,
Muñiz-Calvente,
M.
,
Calçada,
R.
,
Berto,
F.
, and
Fernández-Canteli,
A.
, 2017, “
Generalized Probabilistic Model Allowing for Various Fatigue Damage Variables,” Int. J. Fatigue,
100(Part 1), pp. 187–194.

[CrossRef]
Zhu,
S.-P.
,
Huang,
H.-Z.
,
Peng,
W.
,
Wang,
H.-K.
, and
Mahadevan,
S.
, 2016, “
Probabilistic Physics of Failure-Based Framework for Fatigue Life Prediction of Aircraft Gas Turbine Discs Under Uncertainty,” Reliab. Eng. Syst. Saf.,
146, pp. 1–12.

[CrossRef]
Zhu,
S.-P.
,
Huang,
H.-Z.
,
Li,
Y.
,
Liu,
Y.
, and
Yang,
Y.
, 2015, “
Probabilistic Modeling of Damage Accumulation for Time-Dependent Fatigue Reliability Analysis of Railway Axle Steels,” Proc. Inst. Mech. Eng., Part F,
229(1), pp. 23–33.

[CrossRef]
Naderi,
M.
,
Hoseini,
S.
, and
Khonsari,
M.
, 2013, “
Probabilistic Simulation of Fatigue Damage and Life Scatter of Metallic Components,” Int. J. Plasticity,
43, pp. 101–115.

[CrossRef]
Bahloul,
A.
,
Ahmed,
A. B.
,
Mhala,
M.
, and
Bouraoui,
C.
, 2016, “
Probabilistic Approach for Predicting Fatigue Life Improvement of Cracked Structure Repaired by High Interference Fit Bushing,” Int. J. Adv. Manuf. Technol.,
91(5–8), pp. 2161–2173.

Zhu,
S. P.
,
Foletti,
S.
, and
Beretta,
S.
, 2017, “
Probabilistic Framework for Multiaxial LCF Assessment Under Material Variability,” Int. J. Fatigue,
103, pp. 371–385.

Kwon,
K.
,
Frangopol,
D. M.
, and
Soliman,
M.
, 2011, “
Probabilistic Fatigue Life Estimation of Steel Bridges by Using a Bilinear S–N Approach,” J. Bridge Eng.,
17(1), pp. 58–70.

[CrossRef]
Zhu,
S.-P.
,
Huang,
H.-Z.
,
Smith,
R.
,
Ontiveros,
V.
,
He,
L.-P.
, and
Modarres,
M.
, 2013, “
Bayesian Framework for Probabilistic Low Cycle Fatigue Life Prediction and Uncertainty Modeling of Aircraft Turbine Disk Alloys,” Probab. Eng. Mech.,
34, pp. 114–122.

[CrossRef]
Zhu,
S.-P.
,
Huang,
H.-Z.
,
Ontiveros,
V.
,
He,
L.-P.
, and
Modarres,
M.
, 2012, “
Probabilistic Low Cycle Fatigue Life Prediction Using an Energy-Based Damage Parameter and Accounting for Model Uncertainty,” Int. J. Damage Mech.,
21(8), pp. 1128–1153.

[CrossRef]
Babuska,
I.
,
Sawlan,
Z.
,
Scavino,
M.
,
Szabó,
B.
, and
Tempone,
R.
, 2016, “
Bayesian Inference and Model Comparison for Metallic Fatigue Data,” Comput. Methods Appl. Mech. Eng.,
304, pp. 171–196.

[CrossRef]
Lemaitre,
J.
,
Sermage,
J.
, and
Desmorat,
R.
, 1999, “
A Two Scale Damage Concept Applied to Fatigue,” Int. J. Fracture,
97(1–4), pp. 67–81.

[CrossRef]
Eshelby,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, Related Problems,” Proc. R. Soc. London, Ser. A,
241(1226), pp. 376–396.

[CrossRef]
Kroner,
E.
, 1961, “
On the Plastic Deformation of Polycrystals,” Acta Metall.,
9(2), pp. 155–161.

[CrossRef]
Prudencio,
E. E.
,
Bauman,
P. T.
,
Williams,
S.
,
Faghihi,
D.
,
Ravi-Chandar,
K.
, and
Oden,
J. T.
, 2013, “
A Dynamic Data Driven Application System for Real-Time Monitoring of Stochastic Damage,” Proc. Comput. Sci.,
18, pp. 2056–2065.

[CrossRef]
Prudencio,
E. E.
,
Bauman,
P. T.
,
Faghihi,
D.
,
Ravi-Chandar,
K.
, and
Oden,
J. T.
, 2014, “
A Computational Framework for Dynamic Data-Driven Material Damage Control, Based on Bayesian Inference and Model Selection,” Int. J. Numer. Methods Eng.,
102(3–4), pp. 379–403.

Prudencio,
E.
,
Bauman,
P.
,
Williams,
S.
,
Faghihi,
D.
,
Ravi-Chandar,
K.
, and
Oden,
J.
, 2014, “
Real-Time Inference of Stochastic Damage in Composite Materials,” Compos. Part B: Eng.,
67, pp. 209–219.

[CrossRef]
Saltelli,
A.
,
Ratto,
M.
,
Andres,
T.
,
Campolongo,
F.
,
Cariboni,
J.
,
Gatelli,
D.
,
Saisana,
M.
, and
Tarantola,
S.
, 2008, Global Sensitivity Analysis: The Primer,
Wiley, Hoboken, NJ.

Cukier,
R. I.
,
Fortuin,
C. M.
,
Shuler,
K. E.
,
Petschek,
A. G.
, and
Schaibly,
J. H.
, 1973, “
Study of the Sensitivity of Coupled Reaction Systems to Uncertainties in Rate Coefficients—I: Theory,” J. Chem. Phys.,
59(8), pp. 3873–3878.

[CrossRef]
Sobol',
I. M.
, 1990, “
Sensitivity Estimates for Nonlinear Mathematical Models,” Mat. Model.,
2, pp. 112–118.

Sobol',
I. M.
, 1993, “
Sensitivity Analysis for Non-Linear Mathematical Models,” Math. Model. Comput. Exp.,
1, pp. 407–414.

Homma,
T.
, and
Saltelli,
A.
, 1996, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models,” Reliab. Eng. Syst. Saf.,
52(1), pp. 1–17.

[CrossRef]
Saltelli,
A.
, and
Tarantola,
S.
, 2002, “
On the Relative Importance of Input Factors in Mathematical Models,” J. Am. Stat. Assoc.,
97(459), pp. 702–709.

[CrossRef]
Tarantola,
A.
, 2005, “
Inverse Problem Theory and Methods for Model Parameter Estimation,” 1st ed., SIAM, Philadelphia, PA.

Calvetti,
D.
, and
Somersalo,
E.
, 2007, Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing,
Springer, Berlin.

Farrell,
K.
,
Oden,
J. T.
, and
Faghihi,
D.
, 2015, “
A Bayesian Framework for Adaptive Selection, Calibration, and Validation of Coarse-Grained Models of Atomistic Systems,” J. Comput. Phys.,
295, pp. 189–208.

[CrossRef]
Oden,
J. T.
,
Babuska,
I.
, and
Faghihi,
D.
, 2004, “
Predictive Computational Science: Computer Predictions in the Presence of Uncertainty,” Encyclopedia of Computational Mechanics, E. Stein, R. de Borst, and T. J. R. Hughes, eds., Wiley, NJ.

[PubMed] [PubMed]
Farrell,
K.
, and
Oden,
J. T.
, 2014, “
Calibration and Validation of Coarse-Grained Models of Atomic Systems: Application to Semiconductor Manufacturing,” Comput. Mech.,
54(1), pp. 3–19.

[CrossRef]
Kaipio,
J.
, and
Somersalo,
E.
, 2006, Statistical and Computational Inverse Problems, Vol.
160,
Springer Science & Business Media, Berlin.

Allahverdizadeh,
N.
,
Manes,
A.
, and
Giglio,
M.
, 2012, “
Identification of Damage Parameters for Ti-6al-4v Titanium Alloy Using Continuum Damage Mechanics,” Materialwiss. Werkstofftech.,
43(5), pp. 435–440.

[CrossRef]
Zherebtsov,
S.
,
Salishchev,
G.
,
Galeyev,
R.
, and
Maekawa,
K.
, 2005, “
Mechanical Properties of Ti–6Al–4V Titanium Alloy With Submicrocrystalline Structure Produced by Severe Plastic Deformation,” Mater. Trans.,
46(9), pp. 2020–2025.

[CrossRef]
Saltelli,
A.
, 2002, “
Making Best Use of Model Evaluations to Compute Sensitivity Indices,” Comput. Phys. Commun.,
145(2), pp. 280–297.

[CrossRef]
Saltelli,
A.
,
Annoni,
P.
,
Azzini,
I.
,
Campolongo,
F.
,
Ratto,
M.
, and
Tarantola,
S.
, 2010, “
Variance Based Sensitivity Analysis of Model Output. Design and Estimator for the Total Sensitivity Index,” Comput. Phys. Commun.,
181(2), pp. 259–270.

[CrossRef]
Helton,
J. C.
, and
Davis,
F. J.
, 2003, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems,” Reliab. Eng. Syst. Saf.,
81(1), pp. 23–69.

[CrossRef]
McKay,
M. D.
,
Beckman,
R. J.
, and
Conover,
W. J.
, 1979, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code,” Technometrics,
21(2), pp. 239–245.

Prudencio,
E.
, and
Schulz,
K.
, 2012, “
The Parallel c++ Statistical Library ‘Queso’: Quantification of Uncertainty for Estimation, Simulation and Optimization,” Euro-Par 2011: Parallel Processing Workshops (Lecture Notes in Computer Science), Vol. 7155,
M. Alexander
,
P. D'Ambra
,
A. Belloum
,
G. Bosilca
,
M. Cannataro
,
M. Danelutto
,
B. Martino
,
M. Gerndt
,
E. Jeannot
,
R. Namyst
,
J. Roman
,
S. Scott
,
J. Traff
,
G. Vallée
, and
J. Weidendorfer
, eds.,
Springer, Berlin, pp. 398–407.

[CrossRef]
Prudencio,
E.
, and
Cheung,
S. H.
, 2012, “
Parallel Adaptive Multilevel Sampling Algorithms for the Bayesian Analysis of Mathematical Models,” Int. J. Uncertainty Quantif.,
2(3), pp. 215–237.

Lagarias,
J. C.
,
Reeds,
J. A.
,
Wright,
M. H.
, and
Wright,
P. E.
, 1998, “
Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions,” SIAM J. Optim.,
9(1), pp. 112–147.

[CrossRef]