Resilience Quantification for Probabilistic Design of Cyber-Physical System Networks

[+] Author and Article Information
Yan Wang

School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

1Corresponding author.

ASME doi:10.1115/1.4039148 History: Received March 12, 2016; Revised January 21, 2018


Cyber-physical systems (CPS) are the physical systems of which individual components have functional identities in both physical and cyber spaces. Given the vastly diversified CPS components in dynamically evolving networks, designing an open and resilient architecture with flexibility and adaptability thus is important. To enable a resilience engineering approach for systems design, quantitative measures of resilience have been proposed by researchers. Yet, domain dependent system performance metrics are required to quantify resilience. In this paper, generic system performance metrics for CPS are proposed, which are entropy, conditional entropy, and mutual information associated with the probabilities of successful prediction and communication. A new probabilistic design framework for CPS network architecture is also proposed for resilience engineering, where several information fusion rules can be applied for data processing at the nodes. Sensitivities of metrics with respect to the probabilistic measurements are studied. Fine-grained discrete-event simulation models of communication networks are used to demonstrate the applicability of the proposed metrics.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Articles from Part A: Civil Engineering
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In