Telenko,
C.
, and
Seepersad,
C. C.
, 2014, “
Probabilistic Graphical Modeling of Use Stage Energy Consumption: A Lightweight Vehicle Example,” ASME J. Mech. Des.,
136(10), p. 101403.

[CrossRef]
Liang,
C.
, and
Mahadevan,
S.
, 2017, “
Pareto Surface Construction for Multi-Objective Optimization Under Uncertainty,” Struct. Multidiscip. Optim.,
55(5), pp. 1865–1882.

Du,
X.
, and
Chen,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design,” ASME J. Mech. Des.,
126(2), pp. 225–233.

Cheng,
Y.
, and
Du,
X.
, 2016, “
System Reliability Analysis With Dependent Component Failures During Early Design Stage—A Feasibility Study,” ASME J. Mech. Des.,
138(5), p. 051405.

[CrossRef]
Hu,
Z.
, and
Mahadevan,
S.
, 2016, “
Resilience Assessment Based on Time-Dependent System Reliability Analysis,” ASME J. Mech. Des.,
138(11), p. 111404.

[CrossRef]
Hu,
Z.
,
Mahadevan,
S.
, and
Du,
X.
, 2016, “
Uncertainty Quantification of Time-Dependent Reliability Analysis in the Presence of Parametric Uncertainty,” ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.,
2(3), p. 031005.

[CrossRef]
Shahan,
D. W.
, and
Seepersad,
C. C.
, 2012, “
Bayesian Network Classifiers for Set-Based Collaborative Design,” ASME J. Mech. Des.,
134(7), p. 071001.

[CrossRef]
Khakzad,
N.
,
Khan,
F.
, and
Amyotte,
P.
, 2013, “
Dynamic Safety Analysis of Process Systems by Mapping Bow-Tie Into Bayesian Network,” Process Saf. Environ. Prot.,
91(1–2), pp. 46–53.

[CrossRef]
Khakzad,
N.
,
Khan,
F.
, and
Amyotte,
P.
, 2012, “
Dynamic Risk Analysis Using Bow-Tie Approach,” Reliab. Eng. Syst. Saf.,
104, pp. 36–44.

[CrossRef]
Yuan,
Z.
,
Khakzad,
N.
,
Khan,
F.
, and
Amyotte,
P.
, 2015, “
Risk Analysis of Dust Explosion Scenarios Using Bayesian Networks,” Risk Anal.,
35(2), pp. 278–291.

[CrossRef] [PubMed]
Gradowska,
P. L.
, and
Cooke,
R. M.
, 2014, “
Estimating Expected Value of Information Using Bayesian Belief Networks: A Case Study in Fish Consumption Advisory,” Environ. Syst. Decisions,
34(1), pp. 88–97.

[CrossRef]
Liang, C.
, and
Mahadevan, S.
, 2016, “
Multidisciplinary Optimization Under Uncertainty Using Bayesian Network,” SAE Int. J. Mater. Manf.,
9(2), pp. 419–429.

Bartram,
G.
, and
Mahadevan,
S.
, 2014, “
Integration of Heterogeneous Information in SHM Models,” Struct. Control Health Monit.,
21(3), pp. 403–422.

[CrossRef]
Groth,
K. M.
, and
Swiler,
L. P.
, 2013, “
Bridging the Gap Between HRA Research and HRA Practice: A Bayesian Network Version of SPAR-H,” Reliab. Eng. Syst. Saf.,
115, pp. 33–42.

[CrossRef]
Groth,
K. M.
, and
Mosleh,
A.
, 2012, “
A Data-Informed PIF Hierarchy for Model-Based Human Reliability Analysis,” Reliab. Eng. Syst. Saf.,
108, pp. 154–174.

[CrossRef]
Sankararaman,
S.
, and
Mahadevan,
S.
, 2015, “
Integration of Model Verification, Validation, and Calibration for Uncertainty Quantification in Engineering Systems,” Reliab. Eng. Syst. Saf.,
138, pp. 194–209.

[CrossRef]
Hu,
Z.
, and
Mahadevan,
S.
, 2017, “
Bayesian Network Learning for Uncertainty Quantification,” ASME Paper No. DETC2017-68187.

He,
L.
,
Wang,
M.
,
Chen,
W.
, and
Conzelmann,
G.
, 2014, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles,” Transp. Res. Part D: Transp. Environ.,
32, pp. 421–434.

[CrossRef]
Vinh,
N. X.
,
Chetty,
M.
,
Coppel,
R.
, and
Wangikar,
P. P.
, 2011, “
GlobalMIT: Learning Globally Optimal Dynamic Bayesian Network With the Mutual Information Test Criterion,” Bioinformatics,
27(19), pp. 2765–2766.

[CrossRef] [PubMed]
Ziebarth,
J. D.
,
Bhattacharya,
A.
, and
Cui,
Y.
, 2013, “
Bayesian Network Webserver: A Comprehensive Tool for Biological Network Modeling,” Bioinformatics,
29(21), pp. 2801–2803.

[CrossRef] [PubMed]
Murphy,
K. P.
, 2002, “
Dynamic Bayesian Networks: Representation, Inference and Learning,” Ph.D. dissertation, University of California, Berkeley, CA.

Karkera,
K. R.
, 2014, Building Probabilistic Graphical Models With Python,
Packt Publishing, Birmingham, UK.

Hanea,
A.
,
Kurowicka,
D.
,
Cooke,
R. M.
, and
Ababei,
D.
, 2010, “
Mining and Visualising Ordinal Data With Non-Parametric Continuous BBNs,” Comput. Stat. Data Anal.,
54(3), pp. 668–687.

[CrossRef]
Bedford,
T.
, and
Cooke,
R. M.
, 2002, “
Vines: A New Graphical Model for Dependent Random Variables,” Ann. Stat.,
30(4), pp. 1031–1068.

[CrossRef]
Shenoy,
P. P.
, and
West,
J. C.
, 2011, “
Inference in Hybrid Bayesian Networks Using Mixtures of Polynomials,” Int. J. Approximate Reasoning,
52(5), pp. 641–657.

[CrossRef]
Dojer,
N.
,
Bednarz,
P.
,
Podsiadło,
A.
, and
Wilczyński,
B.
, 2013, “
BNFinder2: Faster Bayesian Network Learning and Bayesian Classification,” Bioinformatics,
29(16), pp. 2068–2070.

[CrossRef] [PubMed]
McGeachie,
M. J.
,
Chang,
H.-H.
, and
Weiss,
S. T.
, 2014, “
CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference With Mixed Discrete and Continuous Data,” PLoS Comput. Biol.,
10(6), p. e1003676.

[CrossRef] [PubMed]
Hu,
Z.
, and
Mahadevan,
S.
, 2017, “
Uncertainty Quantification and Management in Additive Manufacturing: Current Status, Needs, and Opportunities,” Int. J. Adv. Manuf. Technol.,
93(5–8), pp. 2855–2874.

[CrossRef]
Hu,
Z.
,
Mahadevan,
S.
, and
Ao,
D.
, 2017, “
Uncertainty Aggregation and Reduction in Structure–Material Performance Prediction,” Comput. Mech., epub.

Scutari,
M.
, 2009, “
Learning Bayesian Networks With the bnlearn R Package,” preprint arXiv: 0908.3817.

Bonissone,
P.
,
Henrion,
M.
,
Kanal,
L.
, and
Lemmer,
J.
, “
Equivalence and Synthesis of Causal Models,” Uncertainty Artificial Intelligence, Elsevier, Amsterdam, The Netherlands, pp. 255–270.

Wilczyński,
B.
, and
Dojer,
N.
, 2009, “
BNFinder: Exact and Efficient Method for Learning Bayesian Networks,” Bioinformatics,
25(2), pp. 286–287.

[CrossRef] [PubMed]
Bilmes,
J. A.
, 1998, “
A Gentle Tutorial of the EM Algorithm and Its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models,” Int. Comput. Sci. Inst.,
4(510), p. 126.

Sahin,
F.
,
Yavuz,
M. Ç.
,
Arnavut,
Z.
, and
Uluyol,
Ö.
, 2007, “
Fault Diagnosis for Airplane Engines Using Bayesian Networks and Distributed Particle Swarm Optimization,” Parallel Comput.,
33(2), pp. 124–143.

[CrossRef]
Yang,
L.
, and
Lee,
J.
, 2012, “
Bayesian Belief Network-Based Approach for Diagnostics and Prognostics of Semiconductor Manufacturing Systems,” Rob. Comput.-Integr. Manuf.,
28(1), pp. 66–74.

[CrossRef]
Rodriguez‐Zas,
S.
, and
Ko,
Y.
, 2011, “
Elucidation of General and Condition‐Dependent Gene Pathways Using Mixture Models and Bayesian Networks,” Applied Statistics for Network Biology: Methods in Systems Biology, Wiley-Blackwell, Weinheim, Germany, pp. 91–103.

[CrossRef]
Sun,
S.
,
Zhang,
C.
, and
Yu,
G.
, 2006, “
A Bayesian Network Approach to Traffic Flow Forecasting,” IEEE Trans. Intell. Transp. Syst.,
7(1), pp. 124–132.

[CrossRef]
Zhang,
H.
,
Giles,
C. L.
,
Foley,
H. C.
, and
Yen,
J.
, 2017, “
Probabilistic Community Discovery Using Hierarchical Latent Gaussian Mixture Model,” 22nd National conference on Artificial Intelligence (AAAI'07), Vancouver, BC, Canada, July 22–26, pp. 663–668.

Hu,
Z.
, and
Mahadevan,
S.
, 2017, “
Time-Dependent Reliability Analysis Using a Vine-ARMA Load Model,” ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B: Mech. Eng.,
3(1), p. 011007.

[CrossRef]
Davies,
S.
, and
Moore,
A.
, “
Mix-Nets: Factored Mixtures of Gaussians in Bayesian Networks With Mixed Continuous and Discrete Variables,” Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI), Stanford, CA, June 30–July 3, pp. 168–175.

Morlini,
I.
, 2012, “
A Latent Variables Approach for Clustering Mixed Binary and Continuous Variables Within a Gaussian Mixture Model,” Adv. Data Anal. Classif.,
6(1), pp. 5–28.

[CrossRef]
Bartram,
G. W.
, 2013, “
System Health Diagnosis and Prognosis Using Dynamic Bayesian Networks,” Ph.D. thesis, Vanderbilt University, Nashville, TN.