Comparative analysis on traumatic brain injury risk due to primary and secondary impacts in a pedestrian sideswipe accident

[+] Author and Article Information
Atsutaka Tamura

Tottori University Koyama-minami, Tottori, Japan

Junji Hasegawa

Tokyo Metropolitan University Asahigaoka, Hino, Japan

Takao Koide

Tottori University Koyama-minami, Tottori, Japan

1Corresponding author.

ASME doi:10.1115/1.4039464 History: Received February 19, 2017; Revised February 20, 2018


A series of pedestrian sideswipe impacts were computationally reconstructed; a fast-walking pedestrian was collided laterally with the side of a moving vehicle at 25 or 40 km/h, which resulted in rotating the pedestrian’s body axially. Potential severity of traumatic brain injury (TBI) was assessed using linear and rotational acceleration pulses applied to the head and by measuring intracranial brain tissue deformation. We found that TBI risk due to secondary head strike with the ground can be much greater than that due to primary head strike with the vehicle. Further, an ‘effective’ head mass, meff, was computed based upon the impulse and vertical velocity change involved in the secondary head strike, which mostly exceeded the mass of the adult head-form impactor (4.5 kg) commonly used for a current regulatory impact test for pedestrian safety assessment. Our results demonstrated that an SUV is more aggressive than a sedan due to the differences in frontal shape. Additionally, it was highlighted that a striking vehicle velocity should be lower than 25 km/h at the moment of impact to exclude the potential risk of sustaining TBI, which would be mitigated by actively controlling meff, because meff is closely associated with a rotational acceleration pulse applied to the head involved in the final event of ground contact.

Copyright (c) 2018 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Articles from Part A: Civil Engineering
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In