In this study we have developed a unique method for synthesizing very reactive water splitting materials that will remain stable at temperatures as high as 1450 °C to efficiently produce clean hydrogen from concentrated solar energy. The hydrogen production for a laboratory scale reactor using a “Thermo-mechanical Stabilized Porous Structure” (TSPS) is experimentally investigated for oxidation and thermal reduction temperatures of 1200 and 1450 °C, respectively. The stability and reactivity of a 10 g TSPS over many consecutive oxidation and thermal reduction cycles for different particle size ranges has been investigated. The novel thermo-mechanical stabilization exploits sintering and controls the geometry of the matrix of particles inside the structure in a favorable manner so that the chemical reactivity of the structure remains intact. The experimental results demonstrate that this structure yields peak hydrogen production rates of 1–2 cm3/(min.gFe3O4) during the oxidation step at 1200 °C and the 30 minute thermal reduction step at 1450 ° C without noticeable degradation over many consecutive cycles. The hydrogen production rate is one of the highest yet reported in the open literature for thermochemical looping processes using thermal reduction. This novel process has strong potential for developing an enabling technology for efficient and commercially viable solar fuel production.

This content is only available via PDF.
You do not currently have access to this content.