Electrical submersible pump (ESP) technology has been widely applied in the oil and gas industry due to its high productivity. However, erosion always causes the reduction of productivity and sometimes even the failure of an ESP system. This study explores the effect of gas presence on erosion mechanism on an ESP which is composed of 4 stages of Helico-Axial Pump (HAP). A 200-hour erosion test has been performed on this ESP. During the test, the ESP was running at 3600 RPM with a liquid flow rate of 880 GPM, 20% inlet Gas Volume Fraction (GVF), and 0.24% sand concentration by weight. Performance tests were conducted every 50 hours to acquire the performance maps and monitor the performance degradation. Analysis of volume/weight loss and performance degradation is conducted to investigate pump wear. Two types of erosion are found at the impeller: the volume loss found notably at the leading edge is mainly caused by two-body impact erosion, while the tip clearance increment between the impeller housing and impeller blade tip is mainly caused by the three-body abrasive erosion. Unlike most conventional centrifugal pumps, there is no observable wear found at the trailing edge of the impeller. The presence of the gas shows a negative effect on both types of erosion. The consequence of the erosion is the performance degradation, especially at the condition with higher pressure rise. It is suggested to apply this HAP in the oil field with more gas and higher bottom hole pressure.

This content is only available via PDF.
You do not currently have access to this content.