This paper documents the measurement of the unsteady effects of passing shock waves on film cooling heat transfer on both the pressure and suction surfaces of first stage transonic turbine blades with leading edge showerhead film cooling. Experiments were performed for several cooling blowing ratios with an emphasis on time-resolved pressure and heat flux measurements on the pressure surface. Results without film cooling on the pressure surface demonstrated that increases in heat flux were a result of shock heating (the increase in temperature across the shock wave) rather than shock interaction with the boundary layer or film layer. Time-resolved measurements with film cooling demonstrated that the relatively strong shock wave along the suction surface appears to retard coolant ejection there and causes excess coolant to be ejected from pressure surface holes. This actually causes a decrease in heat transfer on the pressure surface during a large portion of the shock passing event. The magnitude of the decrease is almost as large as the increase in heat transfer without film cooling. The decrease in coolant ejection from the suction surface holes did not appear to have any effects on suction surface heat transfer.
Skip Nav Destination
ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
June 16–19, 2003
Atlanta, Georgia, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-3688-6
PROCEEDINGS PAPER
The Unsteady Effect of Passing Shocks on Pressure Surface Versus Suction Surface Heat Transfer in Film-Cooled Transonic Turbine Blades
A. C. Smith,
A. C. Smith
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
A. C. Nix,
A. C. Nix
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
T. E. Diller,
T. E. Diller
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
W. F. Ng
W. F. Ng
Virginia Polytechnic Institute and State University, Blacksburg, VA
Search for other works by this author on:
A. C. Smith
Virginia Polytechnic Institute and State University, Blacksburg, VA
A. C. Nix
Virginia Polytechnic Institute and State University, Blacksburg, VA
T. E. Diller
Virginia Polytechnic Institute and State University, Blacksburg, VA
W. F. Ng
Virginia Polytechnic Institute and State University, Blacksburg, VA
Paper No:
GT2003-38530, pp. 343-350; 8 pages
Published Online:
February 4, 2009
Citation
Smith, AC, Nix, AC, Diller, TE, & Ng, WF. "The Unsteady Effect of Passing Shocks on Pressure Surface Versus Suction Surface Heat Transfer in Film-Cooled Transonic Turbine Blades." Proceedings of the ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. Volume 5: Turbo Expo 2003, Parts A and B. Atlanta, Georgia, USA. June 16–19, 2003. pp. 343-350. ASME. https://doi.org/10.1115/GT2003-38530
Download citation file:
15
Views
0
Citations
Related Proceedings Papers
Related Articles
Heat Transfer Characteristics Analysis on a Fully Cooled Vane With Varied Density Ratios
J. Thermal Sci. Eng. Appl (January,2022)
Improving Purge Air Cooling Effectiveness by Engineered End-Wall Surface Structures—Part II: Turbine Cascade
J. Turbomach (September,2018)
Related Chapters
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment
Adding Surface While Minimizing Downtime
Heat Exchanger Engineering Techniques