At off-design conditions, engine performance model prediction accuracy depends largely on its component characteristic maps. With the absence of actual characteristic maps, performance adaptation needs to be done for good imitations of actual engine performance. A non-linear multiple point Genetic Algorithm based performance adaptation developed earlier by the authors using a set of non-linear scaling factor functions has been proven capable of making accurate performance prediction over a wide range of operating conditions. However, the success depends on searching the right range of scaling factor coefficients heuristically, in order to obtain optimum scaling factor functions. Such search ranges may be difficult to obtain and in many off-design adaption cases, it may be very time consuming due to the nature of trial and error process. In this paper, an improvement on the present adaptation method is presented using a Least Square method where the search range can be selected deterministically. In the new method, off-design adaptation is applied to individual off-design point first to obtain individual off-design point scaling factors. Then plots of the scaling factors against the off-design conditions are generated. Using the Least Square method, the relationship between each scaling factor and the off-design operating condition is generated. The regression coefficients are then used to determine the search range of the scaling factor coefficients before multiple off-design points performance adaptation is finally applied. The developed adaptation approach has been applied to a model single-spool turboshaft engine and demonstrated a simpler and faster way of obtaining the optimal scaling factor coefficients compared with the original off-design adaptation method.

This content is only available via PDF.
You do not currently have access to this content.