Variable Stator Vanes (VSVs) are commonly used in multi-stage axial compressors for stage matching at part load operations and during start up. Improper VSVs settings or malfunction of the controlling actuator system can lead to compressor instabilities including rotating stall and surge. It is important to be able to predict the aerodynamic behaviour of compressors in such events to either produce tolerant designs or incorporate diagnosis and recovery systems.

This paper presents a numerical study of a compressor operating near the stall boundary for a mal-scheduled VSVs case. A high-speed three-stage axial compressor with Inlet Guide Vanes (IGV) is used in the investigation because of its relative simplicity and availability of geometry and aerodynamic data. A 3D RANS viscous unsteady time-accurate flow solver was used to perform the full annulus simulation with a downstream variable nozzle to control outflow boundary conditions. The unstructured mesh contained about 25 million grid points and the simulation was performed on a high performance computing cluster for many engine rotations. Rotating stall with one single cell covering several passages in all three rotors was predicted which propagated at approximately half of the shaft speed. Full analysis of the flow features is presented in the paper.

This content is only available via PDF.
You do not currently have access to this content.