The efficiency is reduced in very small centrifugal compressors due to low Reynolds numbers. In the past, the effect of the Reynolds number on centrifugal compressor performance has been studied experimentally, and empirical correction equations for the efficiency have been derived based on those results. There is a lack of numerical investigations into the effect of the Reynolds number on centrifugal compressor performance and losses. This paper aims to compare the numerical results to the efficiencies predicted by the correction equations found in the literature. The loss generation in the impeller blade passages is also studied in order to find out which loss production mechanism has the most potential to be reduced or eliminated.

The effect of the Reynolds number on compressor performance is investigated in the chord Reynolds number range varying from 0.8 · 105 to 17 · 105 by simulating numerically the original compressors and downscaled ones. The numerical results are validated against experimental data and the results are compared with the efficiency correction equations used in the literature. The results indicate that the performance of the downscaled compressors follow quite precisely the most recently published correction equation. The results also show that the increased losses in low-Reynolds-number compressors are caused both by the relatively increased boundary layer thickness and by the shear stress resulting from the increased vorticity.

This content is only available via PDF.
You do not currently have access to this content.