In the development and assessment of critical gas turbine components, simulations have a crucial role. An accurate life prediction approach is needed to estimate lifespan of these components. Nickel base superalloys remain the material of choice for gas turbine blades in the energy industry. These blades are required to withstand both fatigue and creep at extreme temperatures during their usage time. Nickel-base superalloys present an excellent heat resistance at high temperatures. Presence of chromium in the chemical composition makes these alloys highly resistant to corrosion, which is critical for turbine blades. This study presents a flexible approach to combine creep and fatigue damages for a single crystal Nickel-base superalloy. Stress and strain states are used to compute life calculations, which makes this approach applicable for component level. The cumulative damage approach is utilized in this study, where dominant damage modes are capturing primary microstructural mechanism associated with failure. The total damage is divided into two distinctive modules: fatigue and creep. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. Fatigue module is governed by a modified version of Coffin-Manson and Basquin model, which captures the orientation dependence of the candidate material. Additionally, Robinson’s creep rupture model is applied to predict creep damage in this study. A novel crystal visco-plasticity (CVP) model is used to simulate deformation of the alloy under several different types of loading. This model has capability to illustrate the temperature-, rate-, orientation-, and history-dependence of the material. A user defined material (usermat) is created to be used in ANSYS APDL 19.0, where the CVP model is applied by User Programmable Feature (UPF). This deformation model is constructed of a flow rule and internal state variables, where the kinematic hardening phenomena is captured by back stress. Octahedral, cubic and cross slip systems are included to perform simulations in different orientations. An implicit integration process that uses Newton-Raphson iteration scheme is utilized to calculate the desired solutions. Several tensile, low-cycle fatigue (LCF) and creep experiments were conducted to inform modeling parameters for the life prediction and the CVP models.

This content is only available via PDF.
You do not currently have access to this content.