Abstract

Commonly encountered thermal management challenges of today’s rapidly changing power density, raised-floor hot/cold aisle data centers include typically uncontrollable tile flow non-uniformity along the above-floor cold aisle. For example, the operational cooling provision intensity near the Computer Room Airflow Conditioner (CRAC) unit can be far less than that on the other side (far away from the CRAC unit). This undesired trend leads to an unbalanced aisle-level air cooling and subsequent inefficient power consumption. In this study, the CRAC turbofan blower flow boundary conditions were thoroughly investigated. Computational Fluid Dynamics (CFD) based simulations were employed to describe and evaluate the differently configured CRAC turbofan blower flow conditions (i.e., normal, angled, and sheared CRAC flow patterns) as well as their impacts upon the air cooling performance. This work indicates that the considered turbofan blower boundary condition, together with their underlying transportation mechanism within the plenum, might contribute an essential influence to the flow structure adjacent to the tile perforations. In particular, it was found that the sheared CRAC turbofan blower airflow pattern is capable of giving rise to favorable tile flow straightening manners. This finding further promotes an improvement of the consequently obtained aisle-level air cooling effectiveness and efficiencies, contributing to more advanced data center thermal management in the future.

This content is only available via PDF.
You do not currently have access to this content.