A procedure for blade design, using a time marching method to solve the Euler equations in the blade-to-blade plane is presented. This procedure uses an Office Nationale d’Etude et de Recherches Aeronautique flow solver. The classical slip conditions (no normal velocity component along the blade profile) has been replaced by another boundary conditions in such a way that the required pressure may be imposed directly. The orignal direct code was therefore transformed into an inverse solver. The unknows are calculated on the blade wall using the so-called compatibility relations. The blade geometry is then modified by resetting the wall parallel to the new flow field. The results obtained with this design process for a supersonic turbine blade of a space turbopump is presented.

This content is only available via PDF.