In the Microwave Heating de-nitration (MH) method developed in Japan, a mixed solution of uranyl nitrate and plutonium nitrate (Pu/U mixed nitrate solution) recovered from the spent fuel in the reprocessing plant is converted directly to mixed oxide (MH-MOX) powder. This MH-MOX powder is utilized to fabricate MOX fuel with UO2 powder for FBR.

The MH method is accompanied with transient boiling phenomena such as overflow and flushing. Toward high-speed and high-capacity conversion by MH-method in the future, it is required to avoid overflow and flushing and to understand optimal conditions for vessel shape design and microwave output operation. The objective of this paper is to elucidate occurrence criteria of flushing phenomena.

At the first step for this objective, basic knowledge of transient boiling phenomena by the MH-method has been mainly acquired with using distilled water. From the results, it is observed that generation of singular bubble triggers flushing and distilled water just before flushing is superheated more than 10 °C in conditions that flushing is confirmed. Also, the water temperature reaches its peak, and it is almost unchanged in conditions that flushing is not confirmed. In no flushing conditions, it is found that the evaporation starts from the point where the water temperature reaches its peak, and water level is decreased gradually. Thus, the difference of thermal characteristics greatly affects whether flushing occurs.

The second step, by focusing on the process before flushing occurs, we investigate flow structure, and heat amount through the temperature distribution inside the jelly just after microwave heating. Potassium chloride (KCl) aqueous solution and water are used. KCl solution is electrolyte solution same as reprocessing solution. From the results, upward flow is observed near the center of the solution in the case of the water just after microwave heating. On the other hand, downward flow is observed in the case of KCl solution. As a result of temperature distribution, the water is heated its near center, and KCl solution is heated the around. Thus, it is considered that heat amount of microwave varies depending on solution characteristics, and the difference greatly affects the flow structure. The heat amount and flow structure are critical factors that can determine transient boiling phenomena. We need to investigate transient boiling phenomena of KCl solution in the future.

This content is only available via PDF.
You do not currently have access to this content.