The Fukushima Daiichi nuclear accident shows that it is necessary to study potential severe accidents and corresponding mitigation measures for the spent fuel pool (SFP) of a nuclear power plant (NPP). This paper presents a study on the consequences of loss of heat removal accident in the spent fuel pool of a typical pressurized water reactor using the Modular Accident Analysis Program (MAAP5) code. Analysis of uncompensated loss of water due to the loss of heat removal with initial pool water level of 12.2 m (designated as a reference case) has been performed. The analyses cover a broad spectrum of severe accident in the spent fuel pool. Those consequences such as overheating of uncovered fuel assemblies, oxidation of zirconium and hydrogen generation, loss of intactness of fuel rod claddings, and release of radioactive fission product are also analyzed in this paper. Furthermore, as important mitigation measures, the effects of makeup water in SFP on the accident progressions have also been investigated based on the events of spent fuels uncovery. The results showed that spent fuels could be completely submerged and severe accident might be avoided if SFP makeup water system provided water with a mass flow rate higher than evaporation rate defined in the reference case. Although spent fuel assemblies partly exposed due to a mass flow rate of makeup water smaller than the average evaporation rate, continuous steam cooling and radiation heat transfer might maintain the spent fuels coolability as the actual evaporation was balanced by the makeup in a period of time of the order of several days. However, larger makeup rate should be guaranteed to ensure long-term safety of SFP.

This content is only available via PDF.
You do not currently have access to this content.