Currently, there is a pressing need to detect and identify explosive materials in both military and civilian settings. While these energetic materials vary widely in both form and composition, many traditional explosives consist of a polymeric binder material with embedded energetic crystals. Interestingly, many polymers exhibit considerable self-heating when subjected to harmonic loading, and the vapor pressures of many explosives exhibit a strong dependence on temperature. In light of these facts, thermomechanics represent an intriguing pathway for the stand-off detection of explosives, as the thermal signatures attributable to motion-induced heating may allow target energetic materials to be distinguished from their more innocuous counterparts. In the present work, the mechanical response of a polymeric particulate composite beam subjected to near-resonant base excitation is modeled using Euler-Bernoulli beam theory. Significant sources of heat generation are identified and used with distributed thermal models to characterize the system’s thermomechanical response. In addition, the results of experiments conducted using a hydroxyl-terminated polybutadiene (HTPB) beam with embedded ammonium chloride (NH4Cl) crystals are presented. The thermal and mechanical responses of the sample are recorded using infrared thermography and scanning laser Doppler vibrometry, and subsequently compared to the work’s analytical findings. By adopting the combined research approach utilized herein, the authors seek to build upon recent work and bridge the considerable gap that exists between theory and experiments in this specific field. To this end, the authors hope that this work will represent an integral step in enhancing the ability to successfully detect explosive materials.
Skip Nav Destination
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 17–20, 2014
Buffalo, New York, USA
Conference Sponsors:
- Design Engineering Division
- Computers and Information in Engineering Division
ISBN:
978-0-7918-4641-4
PROCEEDINGS PAPER
On the Thermomechanical Response of HTPB Composite Beams Under Near-Resonant Base Excitation
Daniel C. Woods,
Daniel C. Woods
Purdue University, West Lafayette, IN
Search for other works by this author on:
Jacob K. Miller,
Jacob K. Miller
Purdue University, West Lafayette, IN
Search for other works by this author on:
Jeffrey F. Rhoads
Jeffrey F. Rhoads
Purdue University, West Lafayette, IN
Search for other works by this author on:
Daniel C. Woods
Purdue University, West Lafayette, IN
Jacob K. Miller
Purdue University, West Lafayette, IN
Jeffrey F. Rhoads
Purdue University, West Lafayette, IN
Paper No:
DETC2014-34516, V008T11A076; 11 pages
Published Online:
January 13, 2015
Citation
Woods, DC, Miller, JK, & Rhoads, JF. "On the Thermomechanical Response of HTPB Composite Beams Under Near-Resonant Base Excitation." Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8: 26th Conference on Mechanical Vibration and Noise. Buffalo, New York, USA. August 17–20, 2014. V008T11A076. ASME. https://doi.org/10.1115/DETC2014-34516
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
On the Thermomechanical Response of HTPB-Based Composite Beams Under Near-Resonant Excitation
J. Vib. Acoust (October,2015)
Localized Heating Near a Rigid Spherical Inclusion in a Viscoelastic Binder Material Under Compressional Plane Wave Excitation
J. Appl. Mech (April,2017)
Thermomechanical Formation of Nanoscale Polymer Indents With a Heated Silicon Tip
J. Heat Transfer (November,2007)
Related Chapters
Characterization of Ultra-High Temperature and Polymorphic Ceramics
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Characterization of a Perchlorate Contaminated Site
Intelligent Engineering Systems through Artificial Neural Networks Volume 18
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers