The paper presents a numerical study of incompressible fluid flow through micro-channels. Using a high-resolution numerical method (second-order accurate) in conjunction with a non-linear multigrid algorithm and the pseudo-compressibility approach, we have investigated micro-flows through straight channels, as well as through a sudden contraction-expansion geometry. For the straight channel geometry, the computational results are in reasonable agreement with the experimental data for various low Reynolds numbers. For the contraction-expansion geometry, the results reveal the flow transition to instability. This is manifested in the form of asymmetric separation downstream of the expansion.

This content is only available via PDF.
You do not currently have access to this content.