A finite volume scheme is developed to solve the phonon Boltzmann transport equation in an energy form accounting for phonon dispersion and polarization. The physical space and the first Brillouin zone are discretized into finite volumes and the phonon BTE is integrated over them. Second-order accurate differencing schemes are used for the discretization. The scattering term employs a rigorous implementation of phonon momentum and energy conservation laws in determining the rate of normal and Umklapp processes. The method is applied to a variety of bulk silicon and silicon thin-film conduction problems and shown to perform satisfactorily.

1.
Majumdar
A.
,
1993
, “
Microscale heat conduction in dielectric thin films
”,
ASME J. of Heat Transfer
,
115
, pp.
7
16
.
2.
Joshi
A. A.
and
Majumdar
A.
,
1993
, “
Transient ballistic and diffusive phonon heat transport in thin films
,”
J. Applied Physics
,
74
, No.
1
, pp.
31
39
.
3.
Ju, Y.S., 1999, “Microscale heat conduction in integrated circuits and their constituent films”, Ph.D. thesis, Stanford University.
4.
Ju
Y. S.
and
Goodson
K. E.
,
1999
, “
Phonon scattering in silicon thin films with thickness of order 100 nm
”,
Applied Physics Letters
, Vol.
74
, No.
20
, pp.
3305
3307
.
5.
Sverdrup, P.G., 2000, “Simulation and thermometry of sub-continuum heat transport in semiconductor devices”, Ph.D. thesis, Stanford University.
6.
Narumanchi
S. V.
,
Murthy
J. Y.
and
Amon
C. H.
,
2003
, “
Computations of sub-micron heat transfer in silicon accounting for phonon dispersion
”,
Proceedings of 2003 ASME Summer Heat Transfer Conference
, V
2003
, pp.
569
578
7.
Narumanchi
S. V.
,
Murthy
J. Y.
and
Amon
C. H.
,
2005
, “
Comparison of different phonon transport models for predicting heat conduction in silicon-on-insulator transistors
”,
ASME J. of Heat Transfer
, Vol.
127
, pp.
713
723
.
8.
Armstrong
B.
,
1981
, “
Two-fluid theory of thermal conductivity of dielectric crystals
”,
Physical Review B
, Vol.
23
, No.
2
, pp.
883
899
.
9.
Pop, E., Banerjee, K., Sverdrup, P.G., Dutton, R. and Goodson, K.E., 2001, “Localized heating effects and scaling of sub-0.18 micron CMOS devices”, IEEE International Electron Devices Meeting.
10.
Klemens
P. G.
,
1958
, “
Thermal conductivity and lattice vibrational modes
”, in
Solid State Physics
, edited by Seitz, F. and Thurnbull, D., Vol.
7
, pp.
1
98
.
11.
Klemens
P. G.
,
1959
, “
Theory of the thermal conductivity of solids
”, in
Thermal Conductivity
, edited by Tye, R.P., Vol.
1
, pp.
1
68
.
12.
Han
Y. J.
and
Klemens
P. G.
,
1993
, “
Anharmonic thermal resistivity of dielectric crystals at low temperatures
”,
Physical Review B
, Vol.
48
, No.
9
, pp.
6033
6042
.
13.
Modest, M.F., 1993, “Radiative heat transfer”, McGraw-Hill, New York.
14.
Lundstrom, M., 2000, “Fundamentals of carrier transport”, Cambridge University Press, New York.
15.
Mazumder
S.
and
Majumdar
A.
,
2001
, “
Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
”,
ASME J. of Heat Transfer
,
123
, pp.
749
759
.
16.
Ziman, J.M., 1960, “Electrons and Phonons”, Oxford University Press, London, United Kingdom
17.
Kittel, C., “Introduction to solid state physics”, 1986, John Wiley & Sons, Inc., New York.
18.
Holland
M. G.
,
1964
, “
Phonon scattering in semi-conductors from thermal conductivity studies
”,
Physical Review
, Vol.
134
, No.
2A
, pp.
A471–A480
A471–A480
.
19.
Holland
M. G.
,
1963
, “
Analysis of lattice thermal conductivity
”,
Physical Review B
, Vol.
132
, No.
6
, pp.
2461
2471
.
20.
Ghatak, A.K. and Kothari, L.S., 1972, “An introduction to lattice dynamics”, Addison-Wesley Publishing, London.
21.
Weber
W.
,
1977
, “
Adiabatic bond charge model for the phonons in diamond, Si, Ge, and alpha -Sn
”,
Physical Review B
, Vol.
15
, pp.
4789
4803
.
22.
Nilsson
G.
and
Helin
G.
,
1972
, “
Study of the Homology between Silicon and Germanium by Thermal-Neutron Spectrometry
”,
Physical Review B
, Vol.
6
, pp.
3777
3786
.
23.
Murthy
J. Y.
and
Mathur
S. R.
,
2002
, “
Computation of sub-micron thermal transport using an unstructured finite volume method
”,
ASME Journal of Heat Transfer
, Vol.
124
, pp.
1176
1181
.
24.
Patankar, S.V., 1980, “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York.
25.
Mathur
S. R.
and
Murthy
J. Y.
,
1997
, “
A pressure based method for unstructured meshes
”,
Numerical Heat Transfer Part B
, Vol.
31
, No.
2
, pp.
195
216
.
26.
Wang, T. and Murthy, J.Y., 2004, “An improved computation procedure for phonon relaxation times”, Proceedings of IMECE2004, IMECE2004–61901.
27.
Asheghi
M.
,
Touzelbaev
M. N.
,
Goodson
K. E.
,
Leung
Y. K.
, and
Wong
S. S.
,
1998
, “
Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates
”,
J. of Heat Transfer
,
120
, pp.
30
36
.
28.
Asheghi
M.
,
Kurabayashi
K.
,
Kasnavi
R.
, and
Goodson
K. E.
,
2002
, “
Thermal conduction in doped single-crystal silicon films
”,
J. of Applied Physics
,
91
, No.
8
, pp.
5079
5088
.
29.
Yang
B.
and
Chen
G.
,
2000
, “
Lattice dynamics study of phonon heat conduction in quantum wells
”,
Phys. Low-Dim. Struct.
,
5/6
, pp.
37
48
This content is only available via PDF.
You do not currently have access to this content.