Compared to other machining processes, grinding involves high specific energy. This energy mainly transforms to heat which makes detrimental effects on surface integrity as well as tool wear. In dry grinding, as there is no cutting fluid to transmit generated heat in the contact zone, reducing grinding energy and grinding forces are crucial. Presented in this paper are some of the promising results of the systematic research work carried out by the authors in order to come closer to the goal of pure dry grinding. A new method to reduce the heat by superimposing ultrasonic vibrations on workpiece movement is presented. The obtained results show that the application of ultrasonic vibration can eliminate the thermal damage on the workpiece and decrease the grinding forces considerably. A decrease of up to 60% of normal grinding forces and up to 40% of tangential grinding forces has been achieved.

This content is only available via PDF.
You do not currently have access to this content.