Quantification of oil droplet shearing in produced water treatment facilities is a crucial aspect of operations for the oil and gas industry. In this paper, a detail mathematical modeling of droplet breakage and coalescence using a Population Balance Method (PBM) is addressed. The PBM models the dynamics of droplet size distribution due continuous interactions between individual droplets (such as coalescence and breakup). An understanding of the PBM in regards to the conservation of mass of dispersed droplets is also developed. A stand-alone PBM is used for calculating coalescence and breakage rates in a system having homogeneous mixture and constant turbulent energy dissipation. A coupled computational fluid dynamics-PBM approach is also implemented in a hydrocyclone to examine the local rates of droplet breakup and coalescence. Effects of the turbulent intensity and the interfacial tension of an oil-water mixture and the volume fraction of the dispersed phase on the time evolution of volume fraction distribution and Sauter mean diameter are examined. Results show that, for typical fluid properties associated with produced water, droplet-droplet coalescence is dominant over droplet breakage when the turbulent energy dissipation (ε) is small; the opposite is found for regions associated with high energy dissipation. In a hydrocyclone, the rate of droplets shearing is significant near the entry and at the inlet chamber; this rate decreases downstream. The research outcomes based on the stand-alone PBM and coupled CFD-PBM approaches allow us to identify and redesign the critical part of the water treating facilities to minimize shearing of dispersed droplets.
Skip Nav Destination
ASME 2015 International Mechanical Engineering Congress and Exposition
November 13–19, 2015
Houston, Texas, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5747-2
PROCEEDINGS PAPER
Modeling Droplets Shearing and Coalescence Using a Population Balance Method in Produced Water Treatment Systems
Abdul Motin,
Abdul Motin
Michigan State University, East Lansing, MI
Search for other works by this author on:
John M. Walsh,
John M. Walsh
CETCO Energy Services, Houston, TX
Search for other works by this author on:
André Bénard
André Bénard
Michigan State University, East Lansing, MI
Search for other works by this author on:
Abdul Motin
Michigan State University, East Lansing, MI
John M. Walsh
CETCO Energy Services, Houston, TX
André Bénard
Michigan State University, East Lansing, MI
Paper No:
IMECE2015-53097, V07BT09A023; 10 pages
Published Online:
March 7, 2016
Citation
Motin, A, Walsh, JM, & Bénard, A. "Modeling Droplets Shearing and Coalescence Using a Population Balance Method in Produced Water Treatment Systems." Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 7B: Fluids Engineering Systems and Technologies. Houston, Texas, USA. November 13–19, 2015. V07BT09A023. ASME. https://doi.org/10.1115/IMECE2015-53097
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Mili-Scale Visualization of Bubble Growth-Translation and Droplet Impact Dynamics
J. Heat Transfer (August,2006)
Investigation of Liquid Droplet Flow Behavior in a Vertical Nozzle Chamber
J. Energy Resour. Technol (May,2021)
Ejection Process Simulation for a Piezoelectric Microdroplet Generator
J. Fluids Eng (November,2006)
Related Chapters
Crack(s) in a Rod or a Plate by Energy Rate Analysis
The Stress Analysis of Cracks Handbook, Third Edition
Concluding Remarks and Future Work
Ultrasonic Welding of Lithium-Ion Batteries
Makeup Water Treatment Plant Start-Up
Consensus on Pre-Commissioning Stages for Cogeneration and Combined Cycle Power Plants