This paper presents a novel robust digital speed control design for brushless DC motors (BLDCs). The speed control can be achieved by regulating the DC link voltage of a six-step inverter. The discrete-time brushless DC motor dynamics is derived through bilinear transform. A robust digital control algorithm is designed to guarantee the closed loop system stability by satisfying the desired phase and gain margin. Computer numerical simulation studies and hardware implementation have demonstrated the effectiveness and robustness of the proposed scheme.

This content is only available via PDF.
You do not currently have access to this content.