Abstract
The flow field induced inside a cylindrical container by the rotation of the two end walls is described. It is shown that stagnation points leading to separation bubbles occur on the axis of rotation and/or the bottom end wall for certain ranges of the characteristic parameters; the Reynolds number, the aspect ratio of the container, and the ratio of the rotation rates of the end walls. Flow fields in a container of aspect ratio 2.0 is examined for Reynolds numbers from 100 to 3000 and ratios of the rotation rates of the top and bottom end walls from −0.10 to 1.0. For a range of ratios of the rotation rates of the top and bottom end walls and Reynolds numbers it is shown that ring vortices surrounding a columnar vortex core exist.
Volume Subject Area:
Dynamics of Rotating and Buoyancy-Driven Flows
This content is only available via PDF.
Copyright © 1997 by The American Society of Mechanical Engineers
You do not currently have access to this content.