Abstract

The flow and heat transfer characteristics of a turbulent submerged air jet impinging on a horizontal flat surface is studied. The primary aerodynamics that influence the heat transfer are shown to be the turbulent fluctuations of the free stream velocity. Two regions with distinct flow characteristics are observed, the impingement or stagnation region, and the wall-jet region. Heat transfer relations are derived for each region, based on the assumption that the sum of the laminar and turbulent component of heat flux approximates the total wall heat flux. The laminar component, hlam, of the heat transfer coefficient agrees well with published data. The turbulent component, htur, in the stagnation and wall-jet region are shown to vary linearly with the root mean square value of the fluctuating component of velocity, u’. Unlike the stagnation region, htur in the wall-jet region shows dependence on the Nozzle Reynolds Number, ReD.

This content is only available via PDF.
You do not currently have access to this content.