Abstract
Electronic packages are usually subjected to varying temperature conditions, thus subjecting the package to thermal cyclic loadings. As the different components of the package are made up of materials of different Coefficients of Thermal Expansion (CTE), the thermal cyclic loading brings about fluctuating shear stress to arise within the package, ultimately leading to its failure. It has been seen in previous literature that the recrystallization assisted cracking is a major factor that leads to the failure of solder joints when subjected to thermomechanical cycles. In this study, the authors have tried to determine whether the mechanical shear cycling of aged and non-aged samples of SAC305 lead free solder joints undergo a recrystallization phase before its ultimate failure. Arrays (3 × 3) of SAC305 solder joints of roughly 750μm in diameter were reflowed in between two FR-4 printed circuit boards to create a sandwiched structural sample. The samples were then polished to expose the solder joints. A polarized light microscope was utilized to capture the images of the joints before and after the mechanical cycling and analyzed to observe any changes in the microstructure in the form of recrystallization of the tin grains.