Biofuel derived from cellulosic biomass is a sustainable alternative to petroleum-based fuel. Pretreatment is an essential step in biofuel production because it accounts for more than 20% of the inputs. Furthermore, particle size reduction as a preprocessing step prior to pretreatment exerts a substantial impact on all following processes. Many studies have investigated the effects of biomass particle size on sugar yield after conventional pretreatments of biomass such as alkaline and dilute acid pretreatments. The similar trends have shown that smaller biomass particle size results in higher sugar yield. Supercritical CO2 (SC-CO2) pretreatment has been applied at 1450 psi, 120 °C for 30 mins in this study as a pretreatment method for biofuel production from cellulosic biomass. As a recyclable green-chemistry method, SC-CO2 pretreatment offers many advantages such as no toxic chemicals added and low-cost input. The objective of this study is to understand the effects of particle size on sugar yield after SC-CO2 pretreatment. Three particle size: 1 mm, 2 mm, and 4 mm were used for size reduction of corn stover. Ethanol and water were used as co-solvents to enhance SC-CO2 pretreatment. Analysis of variance (ANOVA) was performed and it is found that, after SC-CO2 pretreatment, the sugar yields differ significantly between 1 mm and 2 mm, 1 mm and 4 mm. In contrast, there is no significant difference between 2 mm and 4 mm after SC-CO2 pretreatment. 1 mm particle produced the highest sugar yield of 0.115 g glucose per 1 g of dry biomass which is 16.62% and 10.39% higher than the 4 mm and 2 mm corn stover biomass produced.

This content is only available via PDF.
You do not currently have access to this content.