Corrosion in ship structures is influenced by a variety of factors that are varying in time and space. Existing corrosion models used in practice only partially address the spatial variability of the corrosion process. Typical estimations of corrosion parameters are based on averaging measurements over structural elements from different ships and operational conditions, without considering the variability among and within the elements. However, this variability is important when determining the necessary inspection coverage, and it may influence the reliability of the ship structure. We develop a probabilistic spatio-temporal corrosion model based on a hierarchical approach, which represents the spatial variability of the corrosion process. The model includes the hierarchical levels vessel – compartment – frame – structural element – plate element. At all levels, variables representing common influencing factors are introduced. Moreover, at the lowest level, which is the one of the plate element, the corrosion process is modeled as a spatial random field. For illustrative purposes, the model is trained through Bayesian analysis with measurement data from a group of tankers. In this application it is found that there is significant spatial dependence among corrosion processes in different parts of the ships, which the proposed hierarchical model can capture. Finally, it is demonstrated how this spatial dependence can be exploited when making inference on the future condition of the ships.

This content is only available via PDF.
You do not currently have access to this content.