Abstract

Advances in subsea exploration in the oceans to discover new petroleum reservoirs and sometimes different kind of minerals at the seabed in ultra deepwater, continuously introduce new challenges in offshore drilling operations. This motivates the development of increasingly safe maritime operations.

In offshore petroleum, a marine drilling riser is the pipe that connects a wellhead at the sea bottom to a drillship at the sea surface, as an access to the wellbore. It serves as a guide for the drilling column with the drill bit and conductor to carry cuttings of rock coming from the wellbore drilling and its construction. Drilling riser is constantly exposed to adversity from the environment, such as waves, sea currents and platform motions induced by waves. These elements of the environment are prevailing factors that can cause a riser failure during deepwater drilling operations with undesirable consequences for the environment.

In the present work, key parameters that influence the probability of fatigue failure in a marine drilling riser are identified, and a parametric evaluation with those parameters are carried out. Dynamic behavior of a riser is previously calculated and fatigue damage is estimated. Afterwards, the First Order Reliability Method (FORM) is applied to determine the probability of fatigue failure on the riser. Fundamentals of the procedure are described, and results are illustrated through the analysis for a typical riser in deepwater drilling operation. Parametric evaluations are done observing points considered as critical along the riser length, and looking to the sensitivity of key parameters in the process. For this study, the SN curve from API guidelines is applied and accumulated fatigue damage is estimated from simulations of the stress time series and applying the Palmgren-Miner’s rule. Finally, the influence of each parameter in the reliability of fatigue failure is verified and discussions given.

This content is only available via PDF.
You do not currently have access to this content.