In the past, most of the offshore wind farms have been installed in European countries. In contrast to offshore wind projects in European waters, it became clear that the impact from earthquakes is expected to be one of the major design drivers for the wind turbines and their support structures in other areas of the world. This topic is of high importance in offshore markets in the Asian Pacific region like China, Taiwan, Japan, Korea as well as parts of the United States. So far, seismic design for wind turbines is not described in large details in existing wind energy standards while local as well as international offshore oil & gas standards do not consider the specifics of modern wind turbines. In 2019, DNV GL started a Joint Industry Project (JIP) called “ACE -Alleviating Cyclone and Earthquake challenges for wind farms”. Based on the project results, a Recommended Practice (RP) for seismic design of wind turbines and their support structures will be developed. It will supplement existing standards like DNVGL-ST-0126, DNVGL-ST-0437 and the IEC 61400 series. This paper addresses the area of seismic load calculation and the details of combining earthquake impact with other environmental loads. Different options of analysis, particularly time-domain simulations with integrated models or submodelling techniques using superelements will be presented. Seismic ground motions using a uniform profile or depth-varying input profile are discussed. Finally, the seismic load design return period is addressed.

This content is only available via PDF.
You do not currently have access to this content.