Thermal sleeves in the shape of thin wall cylinder seated inside the nozzle part of each safety injection (SI) line at pressurized water reactors (PWRs) have such functions as prevention and relief of potential excessive transient thermal stress in the wall of SI line nozzle part which is initially heated up with hot water flowing in the primary coolant piping system when cold water is injected into the system through the SI nozzles during the SI operation. Recently, mechanical failures that the sleeves are separated from the SI branch pipe and fall into the connected cold leg main pipe occurred in sequence at some typical PWR plants in Korea. To find out the root cause of thermal sleeve breakaway failures, the flow situation in the in the junction of primary coolant main pipe and SI branch pipe and the vibration modal characteristics of the thermal sleeve are investigated in details by using both computational fluid dynamic (CFD) code and structure analysis finite element code. As the results, the transient response in fluid pressure exerting on the local part of thermal sleeve wall surface to the primary coolant flow through the pipe junction area during the normal reactor operation mode shows oscillatory characteristics with the frequencies ranging from 15 to 18, which coincide with the lower mode natural frequencies of thermal sleeve having a pinned support condition on the circumferential prominence on the outer surface of thermal sleeve which is put into the circumferential groove on the inner surface of SI nozzle at the mid-height of thermal sleeve. In addition, the variation of pressure on the thermal sleeve surface yield alternating forces and torques in the directions of two rectangular axes perpendicular to the longitudinal axis of cylindrical thermal sleeve, which causes both rolling and pitching motions of the thermal sleeve. Consequently, it is seen that this flow situation surrounding the thermal sleeve during the normal reactor operation can induce resonant vibrations accompanying the shaking motion of the thermal sleeve at the pinned support condition, which finally leads to the failures of thermal sleeve breakaway from the SI nozzle.

This content is only available via PDF.
You do not currently have access to this content.