Pressure wave propagation problems in liquids have traditionally been solved using the methods of fluid transients, i.e. methods of characteristics and impedance. For gases the equations of acoustics are employed. In short pipe lines, in which friction can be ignored, the equations of fluid transients reduce into the form of the wave equation used in acoustics in a channel of constant cross-section. If the wave motion is harmonic, the one-dimensional Webster’s equation and the impedance method yield exactly the same results in tapered channels. The boundary conditions are the known pressure amplitude upstream and zero pressure at the channel outlet. These two methods have been compared for solving wave propagation problems in tapered channels used in many different industrial applications. It was found that these two methods yield exactly the same results, which are also the same as those obtained numerically with the method of characteristics. A desired quality of the tapered channel in many different industrial processes is to minimize the volume flow rate oscillation at the channel outlet. This can be achieved by changing the channel shape from the traditional linear taper, the parabolic shape giving the lowest amplitude. The effect of different quantities such as oscillation frequency and channel dimensions on volume flow rate oscillation was shown. Also, the effect of free air which affects the wave speed was studied. Since the acoustical and fluid transients approaches give identical results in a one-dimensional case, the acoustics method was employed in a three-dimensional problem, which consists of a flow spreader and a tapered channel configuration, and it was solved with the commercial FEM code Abaqus. The results show that there is a variation in the volume flow rate oscillation along the tapered channel width. The three-dimensional computational results can only be verified by measuring the velocity oscillation at the outlet of the tapered channel. The particle image velocimetry (PIV) measurements are in progress at the moment.
Skip Nav Destination
ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference
July 23–27, 2006
Vancouver, BC, Canada
Conference Sponsors:
- Pressure Vessels and Piping Division
ISBN:
0-7918-4755-1
PROCEEDINGS PAPER
Combining Methods of Fluid Transients and Acoustics in Analysis of Pressure Pulsation in Tapered Channels
Timo Karvinen
Timo Karvinen
Tampere University of Technology, Tampere, Finland
Search for other works by this author on:
Timo Karvinen
Tampere University of Technology, Tampere, Finland
Paper No:
PVP2006-ICPVT-11-93519, pp. 1561-1570; 10 pages
Published Online:
July 23, 2008
Citation
Karvinen, T. "Combining Methods of Fluid Transients and Acoustics in Analysis of Pressure Pulsation in Tapered Channels." Proceedings of the ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. Volume 4: Fluid Structure Interaction, Parts A and B. Vancouver, BC, Canada. July 23–27, 2006. pp. 1561-1570. ASME. https://doi.org/10.1115/PVP2006-ICPVT-11-93519
Download citation file:
3
Views
0
Citations
Related Proceedings Papers
Related Articles
Wave Motion. Cambridge Texts in Applied Mechanics
Appl. Mech. Rev (January,2002)
Nonlinear Hyperbolic Waves in Multi-Dimensions. Monographs and Surveys in Pure and Applied Mathematics, Vol. 121.
Appl. Mech. Rev (July,2002)
Propagation of Sound in Inhomogeneous Media: Exact, Transient Solutions in Curvilinear Geometries
J. Vib. Acoust (April,2003)
Related Chapters
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression Systems: A Practical Approach, Second Edition
Pulsation and Vibration Analysis of Compression and Pumping Systems
Pipeline Pumping and Compression System: A Practical Approach, Third Edition