Most small-scale testing techniques are essentially scaled-down versions of conventional testing techniques: they use specimens of similar geometry applied in a similar manner to estimate properties equivalent to those obtained for larger specimens. However, using these techniques for safety assessment of structures and piping systems requires general agreement about the techniques and validation of their results. In addition, these techniques all require destructive testing. In this study we adopt a new nondestructive method to measure the mechanical properties using the instrumented indentation technique. This technique can be applied directly in small-scale and localized sections because of its high spatial resolution. It also has the significant advantage of simplicity of specimen preparation and experimental procedure. During instrumented indentation testing, the load and penetration depth of an indenter tip driven into the sample are monitored, and material properties such as strength, fracture toughness and residual stress are evaluated from this information: the tensile properties by defining a representative stress and strain underneath a spherical indenter; the residual stress values near weldments by using the stress-insensitive contact hardness model.

This content is only available via PDF.
You do not currently have access to this content.