Lots of investigations on failures of wall thinned piping have been carried out since the accident of Surry unit 2 in USA. From these preceding efforts, flow accelerated corrosion (FAC) which is a kind of wall thinning phenomenon is revealed main factor of failure of pipes in nuclear power plants. However, there are a few researches which directly take into account of flow characteristics and geometric changes for stress assessment of FAC-caused wall thinned piping. In this paper, structural integrity assessment employing a fluid-structure interaction (FSI) analysis scheme is performed on pipes representing secondary piping system of PWR which consists of straight pipes and elbows of various bend angles. Prior to the assessment, CFD analyses are conducted to predict plausible wall thinning location by considering flow and geometric parameters such as bend angle and radius of elbow. Then, for typical pipe geometry, detailed limit load analyses are performed to calculate maximum stress caused by turbulence and velocity of flow near the wall thinned part. Through these kinds of detailed parametric analyses, effects of FSI were observed, which should be considered for assessment of FAC-caused wall thinned piping.

This content is only available via PDF.
You do not currently have access to this content.