Steel pressure vessels are commonly used for the transport of pressurized gases, including gaseous hydrogen. In the majority of cases, these transport cylinders experience relatively few pressure cycles over their lifetime, perhaps as many as 25 per year, and generally significantly less. For fueling applications, as in fuel tanks on hydrogen-powered industrial trucks, the hydrogen fuel systems may experience thousands of cycles over their lifetime. Similarly, it can be anticipated that the use of tube trailers for large-scale distribution of gaseous hydrogen will require lifetimes of thousands of pressure cycles. This study investigates the fatigue life of steel pressure vessels that are similar to transport cylinders by subjecting full-scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3 and 44 MPa. In addition to pressure cycling of vessels that are similar to those in service, engineered defects were machined on the inside of several pressure vessels to simulate manufacturing defects and to initiate failure after relatively low number of cycles. Failure was not observed in as-manufactured vessels with more than 55,000 pressure cycles, nor in vessels with relatively small, engineered defects subjected to more than 40,000 cycles. Large engineered defects (with depth greater than 5% of the wall thickness) resulted in failure after 8,000 to 15,000 pressure cycles. Defects machined to depths less than 5% wall thickness did not induce failures. Four pressure vessel failures were observed during the course of this project and, in all cases, failure occurred by leak before burst. The performance of the tested vessels is compared to two design approaches: fracture mechanics design approach and traditional fatigue analysis design approach. The results from this work have been used as the basis for the design rules for Type 1 fuel tanks in the standard entitled “Compressed Hydrogen-Powered Industrial Truck, On-board Fuel Storage and Handling Components (HPIT1)” from CSA America.

This content is only available via PDF.
You do not currently have access to this content.