Modern installation techniques for marine pipelines and subsea risers are often based on the reel-lay method, which introduces significant (plastic) strains on the pipe during reeling and un-reeling. The safe assessment of crack-like flaws under such conditions requires accurate estimations of the elastic-plastic crack driving forces, ideally expressed in a strain-based formulation to better account for the displacement controlled nature of the reeling method. This paper aims to facilitate such assessments by presenting a strain-based expression of the well-known EPRI estimation scheme for the J integral, which is directly based upon fully plastic descriptions of fracture behaviour under significant plasticity. Parametric finite element simulations of bending of circumferentially cracked pipes have been conducted for a set of crack geometries, pipe dimensions and material hardening properties representative of current applications. These provide the numerical assessment of the crack driving force upon which the non-dimensional factors of the EPRI methodology, which scale J with applied strain, are derived. Finally, these factors are presented in convenient graphical and tabular forms, thus allowing the direct and accurate assessment of the J integral for circumferentially cracked pipes subjected to reeling.

This content is only available via PDF.
You do not currently have access to this content.