This paper describes the results of static loading tests using a half-scale thick rubber bearing to investigate ultimate properties application for a Sodium-cooled-Fast-Reactor (SFR). The thick rubber bearing, which has a rubber layer roughly three times thicker in comparison with conventional rubber bearings, has been developed by the authors to ensure seismic safety margins for components installed in the reactor building, and to reduce seismic response in the vertical direction as well as horizontal direction. The thick rubber bearings, 1600 mm in diameter at full scale, have been designed to provide a rated load of about 10000 kN with a horizontal natural period of 3.4 s and a vertical natural period of about 0.133 s. The fundamental restoring-force characteristics of the thick rubber bearings has been already cleared through the static loading tests using a half-scale thick rubber bearing, 800 mm in diameter. However, variations of the restoring force characteristics and ultimate properties have not been obtained yet. These validations are essential from the point of view of Probabilistic Risk Assessment (PRA) for a base isolated nuclear plant as well as to verify the structural integrity of the thick rubber bearing. The purpose of this paper is to indicate the variation of the stiffness and damping ratio concerning restoring force characteristics and the breaking strain or stress as ultimate properties through static loading tests using the half-scale thick rubber bearings.

This content is only available via PDF.
You do not currently have access to this content.