The full time history method for calculating the pipe stresses and restraint loads due to transient flow event requires high computing memory and long simulation time. Alternately, the static equivalent method has been extensively used in power and process industry where a dynamic load factor is used to account for the dynamic amplification response of suddenly applied surge/hammering loads on pipe. In practice, the DLF is multiplied on the maximum value of dynamic force depending on the time rise of load. Due to the complexity of calculating DLF, the engineers adopt maximum value of DLF = 2.0 irrespective of the load variation. The present paper discusses the uncertainty and inaccuracy involved in performing approximate analysis or static equivalent analysis and shows the significance and need of performing full force time history analysis. A new methodology has been derived for the estimation of approximate DLF from the full force time history profiles. Using the stress wave propagation methodology, the DLF can be estimated for the pipe with axial restraints and guides. The axial line stoppers are precondition to apply present method, which can be easily included during design phase of the pipe routes. The DLF’s are computed for sample force curve with various other parameters and are compared with the FEA results. It has also been shown that the load amplification does not scale with the displacement amplification. With proposed methodology the DLF for can be calculated for each pipe. Then it is recommended to perform the static analysis with the estimated DLF’s based on full time history profiles.

This content is only available via PDF.
You do not currently have access to this content.