Some studies concerning ultimate strength of piping under seismic loads concluded that there is a large design margin until failure, even if the stress calculated based on the current design method does not satisfy design criteria. To provide a more rational seismic design, a new Code Case for seismic design of piping is now under development in the framework of JSME Nuclear Codes and Standards. The Code Case incorporates a dynamic elastic-plastic analysis procedure by employing finite element analysis as an alternative to the current design analysis method of elastic assumption. To confirm the applicability of inelastic response analysis, benchmark analyses have been conducted. In the first round benchmark, a carbon steel elbow analysis was performed. In this report, a second round benchmark with a stainless steel elbow and tee is introduced. The second benchmark aims to establish an analysis procedure for stainless steel piping and tee piping of complicated shapes. The second benchmark results provided a practical analysis method for stainless steel piping, and the Code Case was expanded so that it could be applied not only to carbon steel piping but also to stainless steel piping. The second benchmark also challenged analyses of a tee having complicated geometry. These results provide some important knowledge, and they will be included in the Code Case.

This content is only available via PDF.
You do not currently have access to this content.