A total of 24 lab tests were performed to evaluate two different joint assembly patterns (legacy and an alternative pattern), two lubricant types (Nickel based and Moly-Disulphide based), and two types of torque wrenches (Hydraulic and Pneumatic). Bolt stress was measured during assembly using load indicating bolts (SPC4). Assembly time was also measured since alternative assembly patterns have been recognized as a potential method for improving assembly efficiency without negatively impacting bolt pre-load scatter. In order to understand the bolt stress distribution in both of the legacy and alternative assembly patterns, a finite element model was developed to simulate wrench sequences specified by ASME PCC-1. The FEA model included the effect of elastic interaction of the bolts and flange. The FEA results indicate similar behavior when compared to the lab test results, and the FEA study was extended to two other alternative assembly patterns. This paper summarizes the results of the FEA and lab tests on a 24” NPS Class 300 flange and may provide validation and supporting information for users who are considering the use of a more efficient assembly method such as the alternative assembly patterns presented in ASME PCC-1.

This content is only available via PDF.
You do not currently have access to this content.