The material attributes that are fundamental for developing a candidate textured, ceramic-filled PTFE gasket, such as texture style/dimensions, filler material, thickness and so on, create a set of potential combinations that are not practical to experimentally characterize at the component-level one-by-one. Optimizing gasket performance, however, is essential to the operation of bolted connections associated with pressurized vessels that transfer media from one location to another. Gaskets are essential for these systems since they confer high levels of leak mitigation across a range of operating environments. A balance of both compressibility and sealability must be displayed in an optimal candidate gasket to be subjected to aggressive operating conditions. A novel textured PTFE material (termed textured) characterized using a miniaturized test platform. This new-to-market viscoelastic material features a dual-face, raised honeycomb pattern. Experiments on both flat (termed Flat) and textured are used to identify viscoelastic constitutive model constants associated with Burger theories. Considering that the test platform contains an elastic bolt that is tightened to a prescribe torque level, the gasket is subjected to creep relaxation. Test results on the small samples contribute to constitutive modeling. The influence of parameters such as filler material selection, torque level, dwell period, etc. are presented.

This content is only available via PDF.
You do not currently have access to this content.