Three-dimensional large eddy simulations of high-pressure jets at the same nozzle pressure ratio of 5.60 but issuing from different nozzles are conducted. Four different nozzle geometries, i.e., the circular, elliptic, square, and rectangular nozzles, are used to investigate the effect of the nozzle geometry on the near-field jet flow behavior. A high-resolution, hexahedral, and block-structured grid containing about 31.8 million computational cells is applied. The compressible flow solver, astroFoam, which is developed based on the OpenFOAM C++ library, is used to perform the simulations. The time-averaged near-field shock structures and the mean axial density are compared with the experiment data to validate the fidelity of the LES results, and the reasonable agreement is observed. The results indicate that the remarkable differences exist in the near-field flow structures of the jets. In particular, the circular and square jets correspond to a three-dimensional helical instability mode, while the elliptic and rectangular jets have a two-dimensional lateral instability in their minor axis planes. A subsonic flow zone exists after the Mach disk in the circular and square jets, but is lacking in the elliptic and rectangular jets. The intercepting shocks in the circular jet originate near the nozzle exit, and appear to be circular in cross-section. The intercepting shocks in the square jet originate at the four corners of the nozzle exit at first, and then are observed along the major axis plane some distance downstream of the nozzle exit. However, the formation of the intercepting shock is observed in the major axis planes but is lacking in the minor axis planes for the elliptic and rectangular jets. In addition, the real mass flow rates and discharge coefficients for different jets are computed based on the LES modeling, and their differences are explored.

This content is only available via PDF.
You do not currently have access to this content.