The heat affected zone (HAZ) of 2.25Cr-1Mo-0.25V welded joint is a critical part for the safety of hydrogenation reactors. Hydrogen has a significant effect on the HAZ, studying hydrogen diffusion characteristics, such as: hydrogen flux and the effective hydrogen diffusivity has a remarkable value in investigating the hydrogen-induced material degradation mechanisms. In this work, an electrochemical permeation method was applied to study the hydrogen diffusion characteristics of HAZ. Then, the metallographic microscope and a software “Image J” were used to analyze the density of grain boundaries of HAZ. The effect of the post–weld heat treatment (PWHT, i.e. annealing) on the hydrogen diffusion characteristics of HAZ was also been investigated. The results show that after PWHT, the effective hydrogen diffusivity of HAZ increases from 1.63 × 10−7cm2·s−1 to 3.68 × 10−7cm2·s−1, the hydrogen concentration decreases from 1.92 × 10−4mol·cm−3 to 1.09 × 10−4mol·cm−3, and the hydrogen trap density decreases from 3.00 × 1026m−3 to 0.76 × 1026m−3. Thus, PWHT can significantly reduce density of grain boundaries, thereby reducing the hydrogen trap density, enhancing the hydrogen diffusivity and reducing the hydrogen concentration.

This content is only available via PDF.
You do not currently have access to this content.