At ageing power plants, local thinning of pipework or vessel is unavoidable due to erosion/corrosion or other reasons such as flow accelerated corrosion (FAC) — one of the common degradation mechanisms in pipework of nuclear power plant. Local thinning reduces the structure strength, resulting in crack initiation from the corrosion pit or welding defect when subject to cyclic loading. General practice is to use the minimum thickness of the thinned area to calculate both limit load and stress intensity factor (SIF) in performing Engineering Critical Assessment (ECA) using Failure Assessment Diagram (FAD). Using the minimum thickness is normally overly conservative as it assumes that thinning occurs grossly instead of locally, leading to unnecessary early repair/replacement and cost. Performing cracked body finite element analysis (FEA) can provide accurate values of limit load and SIF, but it is time consuming and impractical for daily maintenance and emergent support. To minimise the conservatisms and provide a guidance for the assessment of locally thinned pipework or vessel using existing handbook solutions, a study was carried out by the authors on the effect of local thinning on limit loads. The study demonstrates that local thinning has significant effect on limit load if the thinning ratio of thinning depth to original thickness is larger than 25%. It concluded that the limit load solutions given in handbooks (such as R6 or the net section method) are overly conservative if using the minimum local thickness and non-conservative if using the nominal thickness.

This paper discusses the effect of local thinning on SIFs of internal/external defects using cracked body finite element method (FEM). The results are compared with R6 weight function SIF solutions for a cylinder. A modified R6 SIF solution is proposed to count for the effect of local thinning profile. Along with the previous published paper on limit load it provides comprehensive understanding and guidance for fracture assessment of the local thinned pipework and vessel.

This content is only available via PDF.
You do not currently have access to this content.