For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged.

This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package.

For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence.

The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design.

The FE models include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters.

Additional calculations by using the verified numerical model were done to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure.

The thermal safety assessment was based on analytical energy balance calculations and FE analyses. As an additional point of evaluation in frame of approval procedure, the effect of possible impact limiter burning under accident conditions of transport was considered by the applicant and assessed by BAM.

This paper describes the package design assessment from the point of view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods.

This content is only available via PDF.
You do not currently have access to this content.