An infinite, elastic, circular cylindrical shell submerged in an infinite fluid medium is engulfed by a transverse, transient acoustic wave. The governing equations for modal shell response are reduced through the application of a new method of solution to two simultaneous equations in time; these equations are particularly amenable to solution by machine computation. Numerical results are presented for the first six modes of a uniform sandwich shell submerged in water and excited by a plane step-wave. These results are then used to evaluate the accuracy of a number of approximations which have been employed previously to treat this and similar problems. The results are also used to compute displacement, velocity, and flexural strain responses at certain points in the sandwich shell.

This content is only available via PDF.
You do not currently have access to this content.